These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 11201498)

  • 1. The mechanisms of the vulnerable window: the role of virtual electrodes and shock polarity.
    Yamanouchi Y; Cheng Y; Tchou PJ; Efimov IR
    Can J Physiol Pharmacol; 2001 Jan; 79(1):25-33. PubMed ID: 11201498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the relationship between preshock state and virtual electrode polarization-induced propagated graded responses resulting in arrhythmia induction.
    Bourn DW; Gray RA; Trayanova NA
    Heart Rhythm; 2006 May; 3(5):583-95. PubMed ID: 16648066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure.
    Efimov IR; Cheng Y; Van Wagoner DR; Mazgalev T; Tchou PJ
    Circ Res; 1998 May; 82(8):918-25. PubMed ID: 9576111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shock-induced epicardial and endocardial virtual electrodes leading to ventricular fibrillation via reentry, graded responses, and transmural activation.
    Evans FG; Gray RA
    J Cardiovasc Electrophysiol; 2004 Jan; 15(1):79-87. PubMed ID: 15028078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of line stimulation-induced virtual electrodes and action potential prolongation in arrhythmic propagation.
    Baynham TC; Knisley SB
    J Cardiovasc Electrophysiol; 2001 Feb; 12(2):256-63. PubMed ID: 11370624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence of the role of virtual electrode-induced phase singularity in success and failure of defibrillation.
    Efimov IR; Cheng Y; Yamanouchi Y; Tchou PJ
    J Cardiovasc Electrophysiol; 2000 Aug; 11(8):861-8. PubMed ID: 10969748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution optical mapping of intramural virtual electrodes in porcine left ventricular wall.
    Sharifov OF; Ideker RE; Fast VG
    Cardiovasc Res; 2004 Dec; 64(3):448-56. PubMed ID: 15537498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The vulnerable period for low and high energy T-wave shocks: role of dispersion of repolarisation and effect of d-sotalol.
    Kirchhof PF; Fabritz CL; Zabel M; Franz MR
    Cardiovasc Res; 1996 Jun; 31(6):953-62. PubMed ID: 8759252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intramural virtual electrodes in ventricular wall: effects on epicardial polarizations.
    Sharifov OF; Fast VG
    Circulation; 2004 May; 109(19):2349-56. PubMed ID: 15117837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of lidocaine on shock-induced vulnerability.
    Li L; Nikolski V; Efimov IR
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S237-48. PubMed ID: 14760929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual electrode polarization in the far field: implications for external defibrillation.
    Efimov IR; Aguel F; Cheng Y; Wollenzier B; Trayanova N
    Am J Physiol Heart Circ Physiol; 2000 Sep; 279(3):H1055-70. PubMed ID: 10993768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversal of repolarization gradient does not reverse the chirality of shock-induced reentry in the rabbit heart.
    Cheng Y; Nikolski V; Efimov IR
    J Cardiovasc Electrophysiol; 2000 Sep; 11(9):998-1007. PubMed ID: 11021470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual electrode-induced reexcitation: A mechanism of defibrillation.
    Cheng Y; Mowrey KA; Van Wagoner DR; Tchou PJ; Efimov IR
    Circ Res; 1999 Nov; 85(11):1056-66. PubMed ID: 10571537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of shock-induced arrhythmogenesis during acute global ischemia.
    Cheng Y; Mowrey KA; Nikolski V; Tchou PJ; Efimov IR
    Am J Physiol Heart Circ Physiol; 2002 Jun; 282(6):H2141-51. PubMed ID: 12003822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of superiority of ascending ramp waveforms: new insights into mechanisms of shock-induced vulnerability and defibrillation.
    Qu F; Li L; Nikolski VP; Sharma V; Efimov IR
    Am J Physiol Heart Circ Physiol; 2005 Aug; 289(2):H569-77. PubMed ID: 15792989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shock-induced changes of Ca(i)2+ and Vm in myocyte cultures and computer model: Dependence on the timing of shock application.
    Raman V; Pollard AE; Fast VG
    Cardiovasc Res; 2007 Jan; 73(1):101-10. PubMed ID: 17134687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of ventricular fibrillation by T-wave field-shocks in the isolated perfused rabbit heart: role of nonuniform shock responses.
    Kirchhof PF; Fabritz CL; Behrens S; Franz MR
    Basic Res Cardiol; 1997 Feb; 92(1):35-44. PubMed ID: 9062650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode.
    Efimov IR; Cheng YN; Biermann M; Van Wagoner DR; Mazgalev TN; Tchou PJ
    J Cardiovasc Electrophysiol; 1997 Sep; 8(9):1031-45. PubMed ID: 9300301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical transmembrane potential recordings during intracardiac defibrillation-strength shocks.
    Clark DM; Pollard AE; Ideker RE; Knisley SB
    J Interv Card Electrophysiol; 1999 Jul; 3(2):109-20. PubMed ID: 10387137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular calcium and vulnerability to fibrillation and defibrillation in Langendorff-perfused rabbit ventricles.
    Hwang GS; Hayashi H; Tang L; Ogawa M; Hernandez H; Tan AY; Li H; Karagueuzian HS; Weiss JN; Lin SF; Chen PS
    Circulation; 2006 Dec; 114(24):2595-603. PubMed ID: 17116770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.