BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 1120153)

  • 1. Biosynthesis of p-aminophenylalanine: part of a general scheme for the biosynthesis of chorisimic acid derivatives.
    Dardenne GA; Larsen PO; Wieczorkowska E
    Biochim Biophys Acta; 1975 Feb; 381(2):416-23. PubMed ID: 1120153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of phenylalanine, tyrosine, 3-(3-carbocyphenyl) alanine and 3-(3-carbocy-4-hydroxyphenyl) alanine in higher plants. Examples of the transformation possibilities for chorismic acid.
    Larsen PO; Onderka DK; Floss HG
    Biochim Biophys Acta; 1975 Feb; 381(2):397-408. PubMed ID: 1120151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of chloramphenicol in Streptomyces species 3022a. Isotope incorporation experiments with (G-14C) chorismic, (G-14C) prephenic, and (G-14C, 6-3H) shikimic acids.
    Emes A; Floss HG; Lowe DA; Westlake DW; Vining LC
    Can J Microbiol; 1974 Mar; 20(3):347-52. PubMed ID: 4822053
    [No Abstract]   [Full Text] [Related]  

  • 4. Impaired regulation of aromatic amino acid synthesis in a mutant resistant to p-fluorophenylalanine.
    Barker C; Lewis D
    J Gen Microbiol; 1974 Jun; 82(2):337-43. PubMed ID: 4421507
    [No Abstract]   [Full Text] [Related]  

  • 5. Biosynthesis of chloramphenicol in Streptomyces sp. 3022a. Identification of p-amino-L-phenylalanine as a product from the action of arylamine synthetase on chorismic acid.
    Jones A; Vining LC
    Can J Microbiol; 1976 Feb; 22(2):237-44. PubMed ID: 4210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of the antibiotic 2,5-dihydrophenylalanine by Streptomyces arenae.
    Shimada K; Hook DJ; Warner GF; Floss HG
    Biochemistry; 1978 Jul; 17(15):3054-8. PubMed ID: 698184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermediates in the metabolism of m-carboxy-substituted aromatic amino acids in plants. Phenylpyruvic acids, mandelic acids, and phenylglyoxylic acids.
    Larsen FO; Wieczorkowska E
    Biochim Biophys Acta; 1975 Feb; 381(2):409-15. PubMed ID: 1120152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of phytoquinones. Biosynthetic origins of the nuclei and satellite methyl groups of plastoquinone, tocopherols and tocopherolquinones in maize shoots, bean shoots and ivy leaves.
    Whistance GR; Threlfall DR
    Biochem J; 1968 Oct; 109(4):577-95. PubMed ID: 5683508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of chloramphenicol in Streptomyces sp. 3022a. Properties of an aminotransferase accepting p-aminophenylalanine as a substrate.
    Jones A; Francis MM; Vining LC
    Can J Microbiol; 1978 Mar; 24(3):238-44. PubMed ID: 647477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic analysis of phenylalanine-responding mutants of Pseudomonas aeruginosa.
    Waltho JA
    J Bacteriol; 1972 Dec; 112(3):1070-5. PubMed ID: 4629651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. m-Carboxy-substituted aromatic amino acids in plant metabolism. II. The incorporation of shikimic acid into L-3-(3-carboxy-4-hydroxyphenyl)alanine in Reseda lutea L.
    Larsen PO
    Biochim Biophys Acta; 1966 Feb; 115(2):529-31. PubMed ID: 5943458
    [No Abstract]   [Full Text] [Related]  

  • 12. [On the biogenesis of 5-hydroxy-1,4-napthoquinone (juglone) in Juglans regia L].
    Leistner E; Zenk MH
    Z Naturforsch B; 1968 Feb; 23(2):259-68. PubMed ID: 4385984
    [No Abstract]   [Full Text] [Related]  

  • 13. Cellular compartmentation of aromatic amino acids in Neurospora crassa. II. Synthesis and misplaced accumulation of phenylalanine in phen-2 auxotrophs.
    Brooks CJ; DeBusk BG; DeBusk AG
    Biochem Genet; 1973 Oct; 10(2):105-20. PubMed ID: 4270797
    [No Abstract]   [Full Text] [Related]  

  • 14. Aromatic amino acid biosynthesis in Trichophyton rubrum. 3. Exogenous studies: absence of the shikimic acid pathway.
    Zussman RA; Vicher EE; Lyon I
    Mycopathol Mycol Appl; 1970 Dec; 42(1):1-8. PubMed ID: 4924905
    [No Abstract]   [Full Text] [Related]  

  • 15. Biosynthesis of chloramphenicol.
    Westlake DW; Vining LC
    Biotechnol Bioeng; 1969 Nov; 11(6):1125-34. PubMed ID: 5365805
    [No Abstract]   [Full Text] [Related]  

  • 16. Modulation of auxin formation by the cytosolic phenylalanine biosynthetic pathway.
    Lynch JH; Qian Y; Guo L; Maoz I; Huang XQ; Garcia AS; Louie G; Bowman ME; Noel JP; Morgan JA; Dudareva N
    Nat Chem Biol; 2020 Aug; 16(8):850-856. PubMed ID: 32284603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observations on the biosynthesis of phytoterpenoid quinone and chromanol nuclei.
    Whistance GR; Threlfall DR; Goodwin TW
    Biochem J; 1967 Oct; 105(1):145-54. PubMed ID: 6060446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of chorismic acid and 4-aminobenzoic acid into the 4-hydroxyaniline moiety of N-(gamma-L-glutamyl)-4-hydroxyaniline in Agaricus bisporus.
    Tsuji H; Ogawa T; Bando N; Sasaoka K
    Biochim Biophys Acta; 1985 Jun; 840(2):287-90. PubMed ID: 3873258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereochemistry of chorismic acid biosynthesis.
    Hill RK; Newkome GR
    J Am Chem Soc; 1969 Oct; 91(21):5893-4. PubMed ID: 4897776
    [No Abstract]   [Full Text] [Related]  

  • 20. Ruminal biosynthesis of aromatic amino acids from arylacetic acids, glucose, shikimic acid and phenol.
    Kristensen S
    Br J Nutr; 1974 May; 31(3):357-65. PubMed ID: 4835789
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.