These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 11201810)
1. Effects of transglottal pressure on fundamental frequency of phonation: study with a rubber model. Kataoka H; Kitajima K; Owaki S Ann Otol Rhinol Laryngol; 2001 Jan; 110(1):56-62. PubMed ID: 11201810 [TBL] [Abstract][Full Text] [Related]
2. Relationship between transglottal pressure and fundamental frequency of phonation--study using a rubber model. Owaki S; Kataoka H; Shimizu T J Voice; 2010 Mar; 24(2):127-32. PubMed ID: 19230603 [TBL] [Abstract][Full Text] [Related]
3. Effects of length and depth of vibration of the vocal folds on the relationship between transglottal pressure and fundamental frequency of phonation in canine larynges. Kataoka K; Kitajima K Ann Otol Rhinol Laryngol; 2001 Jun; 110(6):556-61. PubMed ID: 11407847 [TBL] [Abstract][Full Text] [Related]
4. Relationship between transglottal pressure and fundamental frequency of phonation, with effects of dehydration produced by atropine, in healthy volunteers. Tanaka K; Kitajima K; Tanaka H Ann Otol Rhinol Laryngol; 2001 Nov; 110(11):1066-71. PubMed ID: 11713920 [TBL] [Abstract][Full Text] [Related]
5. Computer-aided technique for automatic determination of the relationship between transglottal pressure change and voice fundamental frequency. Deguchi S; Kawashima K; Washio S Ann Otol Rhinol Laryngol; 2008 Dec; 117(12):876-80. PubMed ID: 19140531 [TBL] [Abstract][Full Text] [Related]
6. [Influence of transglottal pressure on vocal fundamental frequency changes with stiffness of vocal folds]. Tanaka K; Kitajima K; Kataoka H; Kataoka K; Tanaka H Nihon Jibiinkoka Gakkai Kaiho; 1997 Jan; 100(1):1-6. PubMed ID: 9038069 [TBL] [Abstract][Full Text] [Related]
7. Effect of artificially lengthened vocal tract on vocal fold oscillation's fundamental frequency. Hanamitsu M; Kataoka H J Voice; 2004 Jun; 18(2):169-75. PubMed ID: 15193649 [TBL] [Abstract][Full Text] [Related]
8. Numerical analysis of effects of transglottal pressure change on fundamental frequency of phonation. Deguchi S; Matsuzaki Y; Ikeda T Ann Otol Rhinol Laryngol; 2007 Feb; 116(2):128-34. PubMed ID: 17388237 [TBL] [Abstract][Full Text] [Related]
9. Effect of subglottic pressure on fundamental frequency of the canine larynx with active muscle tensions. Hsiao TY; Solomon NP; Luschei ES; Titze IR; Liu K; Fu TC; Hsu MM Ann Otol Rhinol Laryngol; 1994 Oct; 103(10):817-21. PubMed ID: 7944175 [TBL] [Abstract][Full Text] [Related]
10. A methodological study of hemilaryngeal phonation. Jiang JJ; Titze IR Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290 [TBL] [Abstract][Full Text] [Related]
11. [Phase relationship between dynamics of the subglottic pressure and oscillatory movement of the vocal folds. I. Sustained phonation]. Dejonckere P; Lebacq J Arch Int Physiol Biochim; 1980 Oct; 88(4):333-41. PubMed ID: 6163402 [TBL] [Abstract][Full Text] [Related]
14. Separate detection of vocal fold vibration by optoreflectometry: a study of biphonation on excised porcine larynges. Ouaknine M; Garrel R; Giovanni A Folia Phoniatr Logop; 2003; 55(1):28-38. PubMed ID: 12566764 [TBL] [Abstract][Full Text] [Related]
15. Effects of transglottal pressure change on fundamental frequency of phonation: preliminary evaluation of the effect of intraoral pressure change. Tanaka K; Kitajima K; Kataoka H Folia Phoniatr Logop; 1997; 49(6):300-7. PubMed ID: 9415735 [TBL] [Abstract][Full Text] [Related]
16. Using the relaxation oscillations principle for simple phonation modeling. Garrel R; Scherer R; Nicollas R; Giovanni A; Ouaknine M J Voice; 2008 Jul; 22(4):385-98. PubMed ID: 17280814 [TBL] [Abstract][Full Text] [Related]
17. Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees. Scherer RC; Shinwari D; De Witt KJ; Zhang C; Kucinschi BR; Afjeh AA J Acoust Soc Am; 2001 Apr; 109(4):1616-30. PubMed ID: 11325132 [TBL] [Abstract][Full Text] [Related]
18. Analytic representation of volume flow as a function of geometry and pressure in a static physical model of the glottis. Fulcher LP; Scherer RC; Zhai G; Zhu Z J Voice; 2006 Dec; 20(4):489-512. PubMed ID: 16434169 [TBL] [Abstract][Full Text] [Related]
19. Optimized transformation of the glottal motion into a mechanical model. Triep M; Brücker C; Stingl M; Döllinger M Med Eng Phys; 2011 Mar; 33(2):210-7. PubMed ID: 21115384 [TBL] [Abstract][Full Text] [Related]
20. The effect of cricothyroid muscle action on the relation between subglottal pressure and fundamental frequency in an in vivo canine model. Hsiao TY; Liu CM; Luschei ES; Titze IR J Voice; 2001 Jun; 15(2):187-93. PubMed ID: 11411473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]