These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11202696)

  • 1. Deposition of gaseous radionuclides to fruit.
    Stewart A; Brudenell A; Collins CD
    J Environ Radioact; 2001; 52(2-3):175-89. PubMed ID: 11202696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transfer of radioactivity to fruit: significant radionuclides and speciation.
    Ould-Dada Z; Fairlie I; Read C
    J Environ Radioact; 2001; 52(2-3):159-74. PubMed ID: 11202695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radionuclides in fruit systems: a review of experimental studies.
    Carini F; Green N; Spalla S
    Sci Total Environ; 2006 Apr; 359(1-3):188-93. PubMed ID: 16165189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relation between the tritium in continuous atmospheric release and the tritium contents of fruits and tubers.
    Korolevych VY; Kim SB
    J Environ Radioact; 2013 Apr; 118():113-20. PubMed ID: 23337314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term modelling of fly ash and radionuclide emissions as well as deposition fluxes due to the operation of large oil shale-fired power plants.
    Vaasma T; Kaasik M; Loosaar J; Kiisk M; Tkaczyk AH
    J Environ Radioact; 2017 Nov; 178-179():232-244. PubMed ID: 28910626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tritium dynamics in soils and plants grown under three irrigation regimes at a tritium processing facility in Canada.
    Mihok S; Wilk M; Lapp A; St-Amant N; Kwamena NA; Clark ID
    J Environ Radioact; 2016 Mar; 153():176-187. PubMed ID: 26773512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TOCATTA: a dynamic transfer model of (3)H from the atmosphere to soil-plant systems.
    Le Dizès S; Aulagnier C; Henner P; Simon-Cornu M
    J Environ Radioact; 2013 Oct; 124():191-204. PubMed ID: 23811129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An attempt for modeling the atmospheric transport of 3H around Kakrapar Atomic Power Station.
    Patra AK; Nankar DP; Joshi CP; Venkataraman S; Sundar D; Hegde AG
    Radiat Prot Dosimetry; 2008; 130(3):351-7. PubMed ID: 18664562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intercomparison of model predictions of
    Yadav P; Le Dizès S
    J Environ Radioact; 2022 Jul; 248():106886. PubMed ID: 35472689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of the development of temperate fruit tree species on the potential for their uptake of radionuclides.
    Atkinson CJ; Webster AD
    J Environ Radioact; 2001; 52(2-3):131-46. PubMed ID: 11202693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The deposition of tritium in form of HTO from atmosphere moisture to Hypogymnia physodes lichens during chamber experiments].
    Golubeva VN; Golubev AV; Kosheleva TA; Kuznetsova VF; Mavrin SV
    Radiats Biol Radioecol; 2008; 48(5):611-5. PubMed ID: 19004335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OBT/HTO ratio in agricultural produce subject to routine atmospheric releases of tritium.
    Korolevych VY; Kim SB; Davis PA
    J Environ Radioact; 2014 Mar; 129():157-68. PubMed ID: 24502954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The deposition and translocation of methyl iodide by crops.
    Collins CD; Gravett AE; Bell JN
    Health Phys; 2004 Nov; 87(5):512-6. PubMed ID: 15551789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncertainty of current understanding regarding OBT formation in plants.
    Melintescu A; Galeriu D
    J Environ Radioact; 2017 Feb; 167():134-149. PubMed ID: 27916298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radionuclides in fruit systems: model-model intercomparison study.
    Linkov I; Carini F; Collins C; Eged K; Mitchell NG; Mourlon C; Ould-Dada Z; Robles B; Sweeck L; Venter A
    Sci Total Environ; 2006 Jul; 364(1-3):124-37. PubMed ID: 16157363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model testing study for the transfer of radioactivity to fruit.
    Ould-Dada Z; Carini F; Mitchell NG
    J Environ Radioact; 2003; 70(3):207-21. PubMed ID: 12957551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the resuspension of radionuclides in Ukrainian regions impacted by Chernobyl fallout.
    Nair SK; Miller CW; Thiessen KM; Garger EK; Hoffman FO
    Health Phys; 1997 Jan; 72(1):77-85. PubMed ID: 8972830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling tritium flux from water to atmosphere: application to the Loire River.
    Marang L; Siclet F; Luck M; Maro D; Tenailleau L; Jean-Baptiste P; Fourré E; Fontugne M
    J Environ Radioact; 2011 Mar; 102(3):244-51. PubMed ID: 21255883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-14 discharge at three light-water reactors.
    Kunz C
    Health Phys; 1985 Jul; 49(1):25-35. PubMed ID: 4008261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerial contamination of fruit through wet deposition and particulate dry deposition.
    Kinnersley RP; Scott LK
    J Environ Radioact; 2001; 52(2-3):191-213. PubMed ID: 11202697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.