BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11204206)

  • 1. Transformations of 12,13-epoxy-11-hydroxy-9-octadecenoic acid and 4,5-epoxy-N-acetylsphingosine by incubation with liver homogenate and liver microsomes.
    Möllenberg A; Spiteller G
    Z Naturforsch C J Biosci; 2000; 55(11-12):981-6. PubMed ID: 11204206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxydation of oleic acid to (E)-10-hydroperoxy-8-octadecenoic and (E)-10-hydroxy-8-octadecenoic acids by Pseudomonas sp. 42A2.
    Guerrero A; Casals I; Busquets M; Leon Y; Manresa A
    Biochim Biophys Acta; 1997 Jul; 1347(1):75-81. PubMed ID: 9233689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of 1,2-epoxy-3-butene to 1,2:3,4-diepoxybutane by cDNA-expressed human cytochromes P450 2E1 and 3A4 and human, mouse and rat liver microsomes.
    Seaton MJ; Follansbee MH; Bond JA
    Carcinogenesis; 1995 Oct; 16(10):2287-93. PubMed ID: 7586124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gas chromatography-mass spectrometry of cis-9,10-epoxyoctadecanoic acid (cis-EODA). I. Direct evidence for cis-EODA formation from oleic acid oxidation by liver microsomes and isolated hepatocytes.
    Tsikas D; Sawa M; Brunner G; Gutzki FM; Meyer HH; Frölich JC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2003 Feb; 784(2):351-65. PubMed ID: 12505783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biotransformation of isoprene and the two isoprene monoepoxides by human cytochrome P450 enzymes, compared to mouse and rat liver microsomes.
    Bogaards JJ; Venekamp JC; van Bladeren PJ
    Chem Biol Interact; 1996 Dec; 102(3):169-82. PubMed ID: 9021169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the biotransformation of 1,3-butadiene and its metabolite, butadiene monoepoxide, by hepatic and pulmonary tissues from humans, rats and mice.
    Csanády GA; Guengerich FP; Bond JA
    Carcinogenesis; 1992 Jul; 13(7):1143-53. PubMed ID: 1638680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotransformation of linoleic acid by Clavibacter sp. ALA2: heterocyclic and heterobicyclic fatty acids.
    Gardner HW; Hou CT; Weisleder D; Brown W
    Lipids; 2000 Oct; 35(10):1055-60. PubMed ID: 11104009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammalian biotransformation of chlordane: in vivo and primary hepatic comparisons.
    Brimfield AA; Street JC
    Ann N Y Acad Sci; 1979 May; 320():247-56. PubMed ID: 287393
    [No Abstract]   [Full Text] [Related]  

  • 9. Metabolism of some barbiturate derivatives to epoxides in rat liver microsomes.
    Pachecka J; Słojkowska Z; Opioła E
    Acta Pol Pharm; 1979; 36(5):613-7. PubMed ID: 44961
    [No Abstract]   [Full Text] [Related]  

  • 10. Biotransformation of allylbenzene analogues in vivo and in vitro through the epoxide-diol pathway.
    Delaforge M; Janiaud P; Levi P; Morizot JP
    Xenobiotica; 1980 Oct; 10(10):737-44. PubMed ID: 7456490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regio- and stereoselectivity of cytochrome P-450 and peroxygenase-dependent formation of cis-12,13-epoxy-9(Z)-octadecenoic acid (vernolic acid) in Euphorbia lagascae.
    Blee E; Ståhl U; Schuber F; Stymne S
    Biochem Biophys Res Commun; 1993 Dec; 197(2):778-84. PubMed ID: 8267615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel metabolic pathways for linoleic and arachidonic acid metabolism.
    Moghaddam M; Motoba K; Borhan B; Pinot F; Hammock BD
    Biochim Biophys Acta; 1996 Aug; 1290(3):327-39. PubMed ID: 8765137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroperoxide-dependent epoxidation of unsaturated fatty acids in the broad bean (Vicia faba L.).
    Hamberg M; Hamberg G
    Arch Biochem Biophys; 1990 Dec; 283(2):409-16. PubMed ID: 2275553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Desaturation of isomeric trans-octadecenoic acids by rat liver microsomes.
    Mahfouz MM; Valicenti AJ; Holman RT
    Biochim Biophys Acta; 1980 Apr; 618(1):1-12. PubMed ID: 7378423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chain elongation of trans-octadecenoic acid isomers in rat liver microsomes.
    Kameda K; Valicenti AJ; Holman RT
    Biochim Biophys Acta; 1980 Apr; 618(1):13-7. PubMed ID: 7378427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of 1,3-butadiene oxidations to butadiene monoxide and crotonaldehyde by mouse liver microsomes and chloroperoxidase.
    Elfarra AA; Duescher RJ; Pasch CM
    Arch Biochem Biophys; 1991 Apr; 286(1):244-51. PubMed ID: 1897952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond detoxification: a role for mouse mEH in the hepatic metabolism of endogenous lipids.
    Marowsky A; Meyer I; Erismann-Ebner K; Pellegrini G; Mule N; Arand M
    Arch Toxicol; 2017 Nov; 91(11):3571-3585. PubMed ID: 28975360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of 2,4,5,2',4',5'-hexachlorobiphenyl with liver microsomes of phenobarbital-treated dog; the possible formation of PCB 2,3-arene oxide intermediate.
    Ariyoshi N; Koga N; Oguri K; Yoshimura H
    Xenobiotica; 1992 Nov; 22(11):1275-90. PubMed ID: 1492420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of d-limonene by hepatic microsomes to non-mutagenic epoxides toward Salmonella typhimurium.
    Watabe T; Hiratsuka A; Isobe M; Ozawa N
    Biochem Pharmacol; 1980 Apr; 29(7):1068-71. PubMed ID: 6992785
    [No Abstract]   [Full Text] [Related]  

  • 20. Oxidation and conjugation of aflatoxins by humans and experimental animals.
    Guengerich FP; Raney KD; Kim DH; Shimada T; Meyer DJ; Ketterer B; Harris TM
    Prog Clin Biol Res; 1992; 374():157-65. PubMed ID: 1620701
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.