These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 11204394)
1. Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model. Ogihara N; Yamazaki N Biol Cybern; 2001 Jan; 84(1):1-11. PubMed ID: 11204394 [TBL] [Abstract][Full Text] [Related]
2. Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury. Paul C; Bellotti M; Jezernik S; Curt A Biol Cybern; 2005 Sep; 93(3):153-70. PubMed ID: 16133587 [TBL] [Abstract][Full Text] [Related]
3. Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator. Aoi S; Ogihara N; Funato T; Sugimoto Y; Tsuchiya K Biol Cybern; 2010 May; 102(5):373-87. PubMed ID: 20217427 [TBL] [Abstract][Full Text] [Related]
4. Muscle spindles and their role in maintaining robust locomotion. Santuz A; Akay T J Physiol; 2023 Jan; 601(2):275-285. PubMed ID: 36510697 [TBL] [Abstract][Full Text] [Related]
5. Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system. Büschges A; Ludwar BCh; Bucher D; Schmidt J; DiCaprio RA Eur J Neurosci; 2004 Apr; 19(7):1856-62. PubMed ID: 15078559 [TBL] [Abstract][Full Text] [Related]
6. The effects of human ankle muscle vibration on posture and balance during adaptive locomotion. Sorensen KL; Hollands MA; Patla E Exp Brain Res; 2002 Mar; 143(1):24-34. PubMed ID: 11907687 [TBL] [Abstract][Full Text] [Related]
8. A neuromechanical model explaining forward and backward stepping in the stick insect. Tóth TI; Knops S; Daun-Gruhn S J Neurophysiol; 2012 Jun; 107(12):3267-80. PubMed ID: 22402652 [TBL] [Abstract][Full Text] [Related]
9. Resonance tuning in a neuro-musculo-skeletal model of the forearm. Verdaasdonk BW; Koopman HF; Van der Helm FC Biol Cybern; 2007 Feb; 96(2):165-80. PubMed ID: 17077977 [TBL] [Abstract][Full Text] [Related]
10. Bipedal robotic walking control derived from analysis of human locomotion. Meng L; Macleod CA; Porr B; Gollee H Biol Cybern; 2018 Jun; 112(3):277-290. PubMed ID: 29399713 [TBL] [Abstract][Full Text] [Related]
11. Reflex regulation of antagonist muscles for control of joint equilibrium position. Lan N; Li Y; Sun Y; Yang FS IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):60-71. PubMed ID: 15813407 [TBL] [Abstract][Full Text] [Related]
12. Rapid spinal mechanisms of motor coordination. Nichols TR; Cope TC; Abelew TA Exerc Sport Sci Rev; 1999; 27():255-84. PubMed ID: 10791019 [No Abstract] [Full Text] [Related]
13. Biomechanical analysis of the development of human bipedal walking by a neuro-musculo-skeletal model. Yamazaki N; Hase K; Ogihara N; Hayamizu N Folia Primatol (Basel); 1996; 66(1-4):253-71. PubMed ID: 8953764 [TBL] [Abstract][Full Text] [Related]
14. A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance. Taga G Biol Cybern; 1998 Jan; 78(1):9-17. PubMed ID: 9485584 [TBL] [Abstract][Full Text] [Related]
15. Mathematical models of proprioceptors. I. Control and transduction in the muscle spindle. Mileusnic MP; Brown IE; Lan N; Loeb GE J Neurophysiol; 2006 Oct; 96(4):1772-88. PubMed ID: 16672301 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of two-dimensional human walking: a test of the lambda-model. Günther M; Ruder H Biol Cybern; 2003 Aug; 89(2):89-106. PubMed ID: 12905038 [TBL] [Abstract][Full Text] [Related]
17. Sensory Feedback in Interlimb Coordination: Contralateral Afferent Contribution to the Short-Latency Crossed Response during Human Walking. Gervasio S; Voigt M; Kersting UG; Farina D; Sinkjær T; Mrachacz-Kersting N PLoS One; 2017; 12(1):e0168557. PubMed ID: 28060839 [TBL] [Abstract][Full Text] [Related]
18. Stance- and locomotion-dependent processing of vibration-induced proprioceptive inflow from multiple muscles in humans. Courtine G; De Nunzio AM; Schmid M; Beretta MV; Schieppati M J Neurophysiol; 2007 Jan; 97(1):772-9. PubMed ID: 17065250 [TBL] [Abstract][Full Text] [Related]
19. Modular organization of murine locomotor pattern in the presence and absence of sensory feedback from muscle spindles. Santuz A; Akay T; Mayer WP; Wells TL; Schroll A; Arampatzis A J Physiol; 2019 Jun; 597(12):3147-3165. PubMed ID: 30916787 [TBL] [Abstract][Full Text] [Related]
20. Control of a one-link arm by burst signal generators. Kim J; Hemami H Biol Cybern; 1995 Jun; 73(1):37-47. PubMed ID: 7654849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]