These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 11204395)
1. Competitive anatomical and physiological plasticity: a neurotrophic bridge. Elliott T; Maddison AC; Shadbolt NR Biol Cybern; 2001 Jan; 84(1):13-22. PubMed ID: 11204395 [TBL] [Abstract][Full Text] [Related]
2. Dissociating ocular dominance column development and ocular dominance plasticity: a neurotrophic model. Elliott T; Shadbolt NR Biol Cybern; 2002 Apr; 86(4):281-92. PubMed ID: 11956809 [TBL] [Abstract][Full Text] [Related]
3. An analysis of synaptic normalization in a general class of Hebbian models. Elliott T Neural Comput; 2003 Apr; 15(4):937-63. PubMed ID: 12689393 [TBL] [Abstract][Full Text] [Related]
4. Stable competitive dynamics emerge from multispike interactions in a stochastic model of spike-timing-dependent plasticity. Appleby PA; Elliott T Neural Comput; 2006 Oct; 18(10):2414-64. PubMed ID: 16907632 [TBL] [Abstract][Full Text] [Related]
5. Multiplicative synaptic normalization and a nonlinear Hebb rule underlie a neurotrophic model of competitive synaptic plasticity. Elliott T; Shadbolt NR Neural Comput; 2002 Jun; 14(6):1311-22. PubMed ID: 12020448 [TBL] [Abstract][Full Text] [Related]
6. Equalization of synaptic efficacy by activity- and timing-dependent synaptic plasticity. Rumsey CC; Abbott LF J Neurophysiol; 2004 May; 91(5):2273-80. PubMed ID: 14681332 [TBL] [Abstract][Full Text] [Related]
12. Multispike interactions in a stochastic model of spike-timing-dependent plasticity. Appleby PA; Elliott T Neural Comput; 2007 May; 19(5):1362-99. PubMed ID: 17381270 [TBL] [Abstract][Full Text] [Related]
13. Synaptic homeostasis and input selectivity follow from a calcium-dependent plasticity model. Yeung LC; Shouval HZ; Blais BS; Cooper LN Proc Natl Acad Sci U S A; 2004 Oct; 101(41):14943-8. PubMed ID: 15466713 [TBL] [Abstract][Full Text] [Related]
14. A mathematical model of activity-dependent, anatomical segregation induced by competition for neurotrophic support. Elliott T; Shadbolt NR Biol Cybern; 1996 Dec; 75(6):463-70. PubMed ID: 9008350 [TBL] [Abstract][Full Text] [Related]
16. A model synapse that incorporates the properties of short- and long-term synaptic plasticity. Sargsyan AR; Melkonyan AA; Papatheodoropoulos C; Mkrtchian HH; Kostopoulos GK Neural Netw; 2003 Oct; 16(8):1161-77. PubMed ID: 13678620 [TBL] [Abstract][Full Text] [Related]
17. Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Zagrebelsky M; Korte M Neuropharmacology; 2014 Jan; 76 Pt C():628-38. PubMed ID: 23752094 [TBL] [Abstract][Full Text] [Related]
18. Regulation of information passing by synaptic transmission: a short review. Di Maio V Brain Res; 2008 Aug; 1225():26-38. PubMed ID: 18586017 [TBL] [Abstract][Full Text] [Related]
19. Astrocytes and synaptic plasticity. Barker AJ; Ullian EM Neuroscientist; 2010 Feb; 16(1):40-50. PubMed ID: 20236948 [TBL] [Abstract][Full Text] [Related]
20. Two-trace model for spike-timing-dependent synaptic plasticity. Echeveste R; Gros C Neural Comput; 2015 Mar; 27(3):672-98. PubMed ID: 25602766 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]