These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 11204557)
1. Frequency and Markov chain analysis of amino acid sequences of mouse p53. Wu G Hum Exp Toxicol; 2000 Sep; 19(9):535-9. PubMed ID: 11204557 [TBL] [Abstract][Full Text] [Related]
2. Frequency and Markov chain analysis of amino-acid sequences of human glutathione reductase. Wu G Biochem Biophys Res Commun; 2000 Feb; 268(3):823-6. PubMed ID: 10679290 [TBL] [Abstract][Full Text] [Related]
3. Frequency and markov chain analysis of amino-acid sequences of human tumour necrosis factor. Wu G Cancer Lett; 2000 May; 153(1-2):145-50. PubMed ID: 10779643 [TBL] [Abstract][Full Text] [Related]
4. Prediction of two- and three-amino-acid sequences of Citrobacter Freundii beta-lactamase from its amino acid composition. Wu G; Yan SM J Mol Microbiol Biotechnol; 2000 Jul; 2(3):277-81. PubMed ID: 10937436 [TBL] [Abstract][Full Text] [Related]
5. Frequency and Markov chain analysis of the amino-acid sequence of human alcohol dehydrogenase alpha-chain. Wu G Alcohol Alcohol; 2000; 35(3):302-6. PubMed ID: 10869252 [TBL] [Abstract][Full Text] [Related]
6. Analysis of distributions of amino acids in the primary structure of tumor suppressor p53 family according to the random mechanism. Wu G; Yan SM J Mol Model; 2002 May; 8(5):191-8. PubMed ID: 12111387 [TBL] [Abstract][Full Text] [Related]
7. The first, second, third and fourth order Markov chain analysis on the amino-acid sequence of human dopamine beta-hydroxylase. Wu G Mol Psychiatry; 2000 Jul; 5(4):448-51. PubMed ID: 10889558 [TBL] [Abstract][Full Text] [Related]
8. Partial characterization of the woodchuck tumor suppressor, p53, and its interaction with woodchuck hepatitis virus X antigen in hepatocarcinogenesis. Feitelson MA; Ranganathan PN; Clayton MM; Zhang SM Oncogene; 1997 Jul; 15(3):327-36. PubMed ID: 9233767 [TBL] [Abstract][Full Text] [Related]
9. Absorbent Markov chains as a model for the study of the evolution of proteins. Di Giulio M; Caldararo F J Theor Biol; 1987 Feb; 124(4):485-94. PubMed ID: 3657201 [TBL] [Abstract][Full Text] [Related]
10. Structural aspects of the p53 protein in relation to gene evolution: a second look. Soussi T; May P J Mol Biol; 1996 Aug; 260(5):623-37. PubMed ID: 8709143 [TBL] [Abstract][Full Text] [Related]
11. Using hidden Markov models to align multiple sequences. Mount DW Cold Spring Harb Protoc; 2009 Jul; 2009(7):pdb.top41. PubMed ID: 20147223 [TBL] [Abstract][Full Text] [Related]
12. p63 in Mytilus galloprovincialis and p53 family members in the phylum Mollusca. Stifanić M; Micić M; Ramsak A; Blasković S; Ruso A; Zahn RK; Batel R Comp Biochem Physiol B Biochem Mol Biol; 2009 Nov; 154(3):264-73. PubMed ID: 19563905 [TBL] [Abstract][Full Text] [Related]
13. Bayesian models and Markov chain Monte Carlo methods for protein motifs with the secondary characteristics. Xie J; Kim NK J Comput Biol; 2005 Sep; 12(7):952-70. PubMed ID: 16201915 [TBL] [Abstract][Full Text] [Related]
14. Note on DNA Analysis and Redesigning Using Markov Chain. Zakarczemny M; Zajęcka M Genes (Basel); 2022 Mar; 13(3):. PubMed ID: 35328107 [TBL] [Abstract][Full Text] [Related]
15. A hidden Markov model for analyzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences. Li W; Meyer CA; Liu XS Bioinformatics; 2005 Jun; 21 Suppl 1():i274-82. PubMed ID: 15961467 [TBL] [Abstract][Full Text] [Related]
16. Determination of sensitive positions to mutations in human p53 protein. Wu G; Yan S Biochem Biophys Res Commun; 2004 Aug; 321(2):313-9. PubMed ID: 15358177 [TBL] [Abstract][Full Text] [Related]
17. Guinea pig p53 mRNA: identification of new elements in coding and untranslated regions and their functional and evolutionary implications. D'erchia AM; Pesole G; Tullo A; Saccone C; Sbisà E Genomics; 1999 May; 58(1):50-64. PubMed ID: 10331945 [TBL] [Abstract][Full Text] [Related]
18. Modulation of p53 activity by IkappaBalpha: evidence suggesting a common phylogeny between NF-kappaB and p53 transcription factors. Dreyfus DH; Nagasawa M; Gelfand EW; Ghoda LY BMC Immunol; 2005 Jun; 6():12. PubMed ID: 15969767 [TBL] [Abstract][Full Text] [Related]
19. Prediction of gamma-turns from amino acid sequences. Guruprasad K; Shukla S; Adindla S; Guruprasad L J Pept Res; 2003 May; 61(5):243-51. PubMed ID: 12662358 [TBL] [Abstract][Full Text] [Related]
20. Detailed computational study of p53 and p16: using evolutionary sequence analysis and disease-associated mutations to predict the functional consequences of allelic variants. Greenblatt MS; Beaudet JG; Gump JR; Godin KS; Trombley L; Koh J; Bond JP Oncogene; 2003 Feb; 22(8):1150-63. PubMed ID: 12606942 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]