These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 11205020)
21. Iron chelation by polyamidoamine dendrimers: a second-order kinetic model for metal-amine complexation. Mankbadi MR; Barakat MA; Ramadan MH; Woodcock HL; Kuhn JN J Phys Chem B; 2011 Nov; 115(46):13534-40. PubMed ID: 21995617 [TBL] [Abstract][Full Text] [Related]
22. Synthesis and characterization of new beta-diketo derivatives with iron chelating ability. Benassi R; Ferrari E; Grandi R; Lazzari S; Saladini M J Inorg Biochem; 2007 Feb; 101(2):203-13. PubMed ID: 17097145 [TBL] [Abstract][Full Text] [Related]
23. Dioxygen reactivity of biomimetic iron-catecholate and iron-o-aminophenolate complexes of a tris(2-pyridylthio)methanido ligand: aromatic C-C bond cleavage of catecholate versus o-iminobenzosemiquinonate radical formation. Halder P; Paria S; Paine TK Chemistry; 2012 Sep; 18(37):11778-87. PubMed ID: 22847897 [TBL] [Abstract][Full Text] [Related]
24. Partition coefficients (free ligands and their iron(III) complexes) and lipophilic behavior of new abiotic chelators. Correlation to biological activity. Thomas F; Baret P; Imbert D; Pierre JL; Serratrice G Bioorg Med Chem Lett; 1999 Oct; 9(20):3035-40. PubMed ID: 10571171 [TBL] [Abstract][Full Text] [Related]
25. 3-Hydroxypyridinone derivatives as metal-sequestering agents for therapeutic use. Santos MA; Chaves S Future Med Chem; 2015; 7(3):383-410. PubMed ID: 25826364 [TBL] [Abstract][Full Text] [Related]
26. Synthesis and thermodynamic evaluation of mixed hexadentate linear iron chelators containing hydroxypyridinone and terephthalamide units. Abergel RJ; Raymond KN Inorg Chem; 2006 May; 45(9):3622-31. PubMed ID: 16634594 [TBL] [Abstract][Full Text] [Related]
28. Novel trihydroxamate-containing peptides: design, synthesis, and metal coordination. Ye Y; Liu M; Kao JL; Marshall GR Biopolymers; 2006; 84(5):472-89. PubMed ID: 16705688 [TBL] [Abstract][Full Text] [Related]
29. Total Synthesis of Hinduchelins A-D, Stereochemical Revision of Hinduchelin A, and Biological Evaluation of Natural and Unnatural Analogues. Childress ES; Garrison AT; Sheldon JR; Skaar EP; Lindsley CW J Org Chem; 2019 May; 84(10):6459-6464. PubMed ID: 31039303 [TBL] [Abstract][Full Text] [Related]
30. Electrophoretic mobility and molecular distribution studies of poly(amidoamine) dendrimers of defined charges. Shi X; Bányai I; Rodriguez K; Islam MT; Lesniak W; Balogh P; Balogh LP; Baker JR Electrophoresis; 2006 May; 27(9):1758-67. PubMed ID: 16586414 [TBL] [Abstract][Full Text] [Related]
31. Water dispersal and functionalization of hydrophobic iron oxide nanoparticles with lipid-modified poly(amidoamine) dendrimers. Boni A; Albertazzi L; Innocenti C; Gemmi M; Bifone A Langmuir; 2013 Sep; 29(35):10973-9. PubMed ID: 23721318 [TBL] [Abstract][Full Text] [Related]
33. Iron(III) complexes of tridentate 3N ligands as functional models for catechol dioxygenases: the role of ligand N-alkyl substitution and solvent on reaction rate and product selectivity. Visvaganesan K; Mayilmurugan R; Suresh E; Palaniandavar M Inorg Chem; 2007 Nov; 46(24):10294-306. PubMed ID: 17958355 [TBL] [Abstract][Full Text] [Related]
34. Fe(III) coordination properties of two new saccharide-based enterobactin analogues: methyl 2,3,4-tris-O-[N-[2,3-di(hydroxy)benzoyl-glycyl]-aminopropyl]-alpha-D-glucopyranoside and methyl 2,3,4-tris-O-[N-[2,3-di-(hydroxy)-benzoyl]-aminopropyl]-alpha-D-glucopyranoside. Dhungana S; Heggemann S; Heinisch L; Möllmann U; Boukhalfa H; Crumbliss AL Inorg Chem; 2001 Dec; 40(27):7079-86. PubMed ID: 11754294 [TBL] [Abstract][Full Text] [Related]
35. Synthesis, physicochemical characterization, and biological evaluation of 2-(1'-hydroxyalkyl)-3-hydroxypyridin-4-ones: novel iron chelators with enhanced pFe(3+) values. Liu ZD; Khodr HH; Liu DY; Lu SL; Hider RC J Med Chem; 1999 Nov; 42(23):4814-23. PubMed ID: 10579844 [TBL] [Abstract][Full Text] [Related]
36. Formation of a tris(catecholato) iron(III) complex with a nature-inspired cyclic peptoid ligand. Oh J; Kang D; Hong S; Kim SH; Choi JH; Seo J Dalton Trans; 2021 Mar; 50(10):3459-3463. PubMed ID: 33599663 [TBL] [Abstract][Full Text] [Related]
37. Tripodal peptide hydroxamates as siderophore models. Iron(III) binding with ligands containing H-(alanyl)n-beta-(N-hydroxy)alanyl strands (n = 1-3) anchored by nitrilotriacetic acid. Hara Y; Shen L; Tsubouchi A; Akiyama M; Umemoto K Inorg Chem; 2000 Oct; 39(22):5074-82. PubMed ID: 11233204 [TBL] [Abstract][Full Text] [Related]
38. Spin crossover of ferric complexes with catecholate derivatives. Single-crystal X-ray structure, magnetic and Mössbauer investigations. Floquet S; Simaan AJ; Rivière E; Nierlich M; Thuéry P; Ensling J; Gütlich P; Girerd JJ; Boillot ML Dalton Trans; 2005 May; (9):1734-42. PubMed ID: 15852126 [TBL] [Abstract][Full Text] [Related]
39. Design of iron chelators: syntheses and iron (III) complexing abilities of tripodal tris-bidentate ligands. d'Hardemare Adu M; Torelli S; Serratrice G; Pierre JL Biometals; 2006 Aug; 19(4):349-66. PubMed ID: 16841245 [TBL] [Abstract][Full Text] [Related]
40. New trends in the chemistry of iron(III) citrate complexes: correlations between X-ray structures and solution species probed by electrospray mass spectrometry and kinetics of iron uptake from citrate by iron chelators. Gautier-Luneau I; Merle C; Phanon D; Lebrun C; Biaso F; Serratrice G; Pierre JL Chemistry; 2005 Mar; 11(7):2207-19. PubMed ID: 15719360 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]