These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11205020)

  • 61. A novel tripodal ligand containing three different N-heterocyclic donor functions and its application in catechol dioxygenase mimicking.
    Wagner M; Limberg C; Tietz T
    Chemistry; 2009; 15(22):5567-76. PubMed ID: 19360824
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Design, synthesis, and physicochemical and biological characterization of a new iron chelator of the family of hydroxychromenes.
    Ferrali M; Bambagioni S; Ceccanti A; Donati D; Giorgi G; Fontani M; Laschi F; Zanello P; Casolaro M; Pietrangelo A
    J Med Chem; 2002 Dec; 45(26):5776-85. PubMed ID: 12477360
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Glycosiderophores: synthesis of tris-hydroxamate siderophores based on a galactose or glycero central scaffold, Fe(III) complexation studies.
    Neff C; Bellot F; Waern JB; Lambert F; Brandel J; Serratrice G; Gaboriau F; Policar C
    J Inorg Biochem; 2012 Jul; 112():59-67. PubMed ID: 22551986
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Synthesis and characterization of ruthenium(II)-pyridylamine complexes with catechol pendants as metal binding sites.
    Kojima T; Hirasa N; Noguchi D; Ishizuka T; Miyazaki S; Shiota Y; Yoshizawa K; Fukuzumi S
    Inorg Chem; 2010 Apr; 49(8):3737-45. PubMed ID: 20329711
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synthesis, physicochemical properties, and biological evaluation of N-substituted 2-alkyl-3-hydroxy-4(1H)-pyridinones: orally active iron chelators with clinical potential.
    Dobbin PS; Hider RC; Hall AD; Taylor PD; Sarpong P; Porter JB; Xiao G; van der Helm D
    J Med Chem; 1993 Aug; 36(17):2448-58. PubMed ID: 8355246
    [TBL] [Abstract][Full Text] [Related]  

  • 66. In vitro dose-response effects of poly(amidoamine) dendrimers [amino-terminated and surface-modified with N-(2-hydroxydodecyl) groups] and quantitative determination by a liquid chromatography-hybrid quadrupole/time-of-flight mass spectrometry based method.
    Hernando MD; Rosenkranz P; Ulaszewska MM; Fernández-Cruz ML; Fernández-Alba AR; Navas JM
    Anal Bioanal Chem; 2012 Nov; 404(9):2749-63. PubMed ID: 22875538
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Specific and cooperative interactions between oximes and PAMAM dendrimers as demonstrated by (1)H NMR study.
    Choi SK; Thomas TP; Leroueil P; Kotlyar A; Van Der Spek AF; Baker JR
    J Phys Chem B; 2012 Aug; 116(34):10387-97. PubMed ID: 22871033
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Synthesis and characterization of the tetranuclear iron(III) complex of a new asymmetric multidentate ligand. A structural model for purple acid phosphatases.
    Boudalis AK; Aston RE; Smith SJ; Mirams RE; Riley MJ; Schenk G; Blackman AG; Hanton LR; Gahan LR
    Dalton Trans; 2007 Nov; (44):5132-9. PubMed ID: 17985020
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Specific sequestering agents for the actinides. 21. Synthesis and initial biological testing of octadentate mixed catecholate-hydroxypyridinonate ligands.
    Uhlir LC; Durbin PW; Jeung N; Raymond KN
    J Med Chem; 1993 Feb; 36(4):504-9. PubMed ID: 8386249
    [TBL] [Abstract][Full Text] [Related]  

  • 70. New 8-hydroxyquinoline and catecholate iron chelators: influence of their partition coefficient on their biological activity.
    Henry C; Rakba N; Imbert D; Thomas F; Baret P; Serratrice G; Gaude D; Pierre JL; Ward RJ; Crichton RR; Lescoat G
    Biochem Pharmacol; 2001 Nov; 62(10):1355-62. PubMed ID: 11709195
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Design and optimization of lipid-modified poly(amidoamine) dendrimer coated iron oxide nanoparticles as probes for biomedical applications.
    Boni A; Bardi G; Bertero A; Cappello V; Emdin M; Flori A; Gemmi M; Innocenti C; Menichetti L; Sangregorio C; Villa S; Piazza V
    Nanoscale; 2015 Apr; 7(16):7307-17. PubMed ID: 25815711
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Zinc(II) and copper(II) complexes with hydroxypyrone iron chelators.
    Lachowicz JI; Nurchi VM; Crisponi G; Jaraquemada-Pelaez Mde G; Ostrowska M; Jezierska J; Gumienna-Kontecka E; Peana M; Zoroddu MA; Choquesillo-Lazarte D; Niclós-Gutiérrez J; González-Pérez JM
    J Inorg Biochem; 2015 Oct; 151():94-106. PubMed ID: 26281974
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport.
    Hong S; Bielinska AU; Mecke A; Keszler B; Beals JL; Shi X; Balogh L; Orr BG; Baker JR; Banaszak Holl MM
    Bioconjug Chem; 2004; 15(4):774-82. PubMed ID: 15264864
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties.
    Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M
    Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Characterization of the aqueous iron(III) chelation chemistry of a potential Trojan Horse antimicrobial agent: chelate structure, stability and pH dependent speciation.
    Harrington JM; Gootz T; Flanagan M; Lall M; O'Donnell J; Winton J; Mueller J; Crumbliss AL
    Biometals; 2012 Oct; 25(5):1023-36. PubMed ID: 22855208
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Synthesis, structure, spectra and reactivity of iron(III) complexes of facially coordinating and sterically hindering 3N ligands as models for catechol dioxygenases.
    Sundaravel K; Dhanalakshmi T; Suresh E; Palaniandavar M
    Dalton Trans; 2008 Dec; (48):7012-25. PubMed ID: 19050788
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Synthesis of symmetrical and unsymmetrical PAMAM dendrimers by fusion between azide- and alkyne-functionalized PAMAM dendrons.
    Lee JW; Kim JH; Kim HJ; Han SC; Kim JH; Shin WS; Jin SH
    Bioconjug Chem; 2007; 18(2):579-84. PubMed ID: 17335177
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Prediction of 3-hydroxypyridin-4-one (HPO) log K1 values for Fe(III).
    Chen YL; Barlow DJ; Kong XL; Ma YM; Hider RC
    Dalton Trans; 2012 Sep; 41(35):10784-91. PubMed ID: 22854534
    [TBL] [Abstract][Full Text] [Related]  

  • 79. 3-Hydroxy-2-(5-hydroxypentyl)-4H-chromen-4-one: a bidentate or tridentate iron(III) ligand?
    Kong X; Zhou T; Neubert H; Liu Z; Hider RC
    J Med Chem; 2006 May; 49(10):3028-31. PubMed ID: 16686545
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties.
    Velusamy M; Mayilmurugan R; Palaniandavar M
    Inorg Chem; 2004 Oct; 43(20):6284-93. PubMed ID: 15446874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.