BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 11205333)

  • 1. Evolution and the molecular basis of somatic hypermutation of antigen receptor genes.
    Diaz M; Flajnik MF; Klinman N
    Philos Trans R Soc Lond B Biol Sci; 2001 Jan; 356(1405):67-72. PubMed ID: 11205333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation.
    Diaz M; Velez J; Singh M; Cerny J; Flajnik MF
    Int Immunol; 1999 May; 11(5):825-33. PubMed ID: 10330287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks.
    Greenberg AS; Avila D; Hughes M; Hughes A; McKinney EC; Flajnik MF
    Nature; 1995 Mar; 374(6518):168-73. PubMed ID: 7877689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of antigen receptor evolution.
    Eason DD; Cannon JP; Haire RN; Rast JP; Ostrov DA; Litman GW
    Semin Immunol; 2004 Aug; 16(4):215-26. PubMed ID: 15522620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Somatic hypermutation of TCR γ V genes in the sandbar shark.
    Chen H; Bernstein H; Ranganathan P; Schluter SF
    Dev Comp Immunol; 2012 May; 37(1):176-83. PubMed ID: 21925537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of somatic hypermutation specificity and A-T base pair substitution errors by DNA polymerase eta during copying of a mouse immunoglobulin kappa light chain transgene.
    Pavlov YI; Rogozin IB; Galkin AP; Aksenova AY; Hanaoka F; Rada C; Kunkel TA
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9954-9. PubMed ID: 12119399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation.
    Sale JE; Calandrini DM; Takata M; Takeda S; Neuberger MS
    Nature; 2001 Aug; 412(6850):921-6. PubMed ID: 11528482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Somatic hypermutation of the new antigen receptor gene (NAR) in the nurse shark does not generate the repertoire: possible role in antigen-driven reactions in the absence of germinal centers.
    Diaz M; Greenberg AS; Flajnik MF
    Proc Natl Acad Sci U S A; 1998 Nov; 95(24):14343-8. PubMed ID: 9826702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An update on the role of translesion synthesis DNA polymerases in Ig hypermutation.
    Diaz M; Lawrence C
    Trends Immunol; 2005 Apr; 26(4):215-20. PubMed ID: 15797512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reflections on the state of play in somatic hypermutation.
    Steele EJ
    Mol Immunol; 2008 May; 45(10):2723-6. PubMed ID: 18359085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA target motifs of somatic mutagenesis in antibody genes.
    Shapiro GS; Wysocki LJ
    Crit Rev Immunol; 2002; 22(3):183-200. PubMed ID: 12498382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of somatic hypermutation and gene conversion in adaptive immunity.
    Diaz M; Flajnik MF
    Immunol Rev; 1998 Apr; 162():13-24. PubMed ID: 9602348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreased frequency and highly aberrant spectrum of ultraviolet-induced mutations in the hprt gene of mouse fibroblasts expressing antisense RNA to DNA polymerase zeta.
    Diaz M; Watson NB; Turkington G; Verkoczy LK; Klinman NR; McGregor WG
    Mol Cancer Res; 2003 Sep; 1(11):836-47. PubMed ID: 14517346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phylogenetic origins of the antigen-binding receptors and somatic diversification mechanisms.
    Cannon JP; Haire RN; Rast JP; Litman GW
    Immunol Rev; 2004 Aug; 200():12-22. PubMed ID: 15242392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis, selection, and ontogeny of the shark new antigen receptor (IgNAR): identification of a new locus preferentially expressed in early development.
    Diaz M; Stanfield RL; Greenberg AS; Flajnik MF
    Immunogenetics; 2002 Oct; 54(7):501-12. PubMed ID: 12389098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A/T-targeted somatic hypermutation: critique of the mainstream model.
    Franklin A; Blanden RV
    Trends Biochem Sci; 2006 May; 31(5):252-8. PubMed ID: 16616496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolutionary and structural 'logic' of antigen receptor diversity.
    Davis MM
    Semin Immunol; 2004 Aug; 16(4):239-43. PubMed ID: 15522622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA polymerase kappa deficiency does not affect somatic hypermutation in mice.
    Schenten D; Gerlach VL; Guo C; Velasco-Miguel S; Hladik CL; White CL; Friedberg EC; Rajewsky K; Esposito G
    Eur J Immunol; 2002 Nov; 32(11):3152-60. PubMed ID: 12555660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absence of DNA polymerase theta results in decreased somatic hypermutation frequency and altered mutation patterns in Ig genes.
    Masuda K; Ouchida R; Hikida M; Nakayama M; Ohara O; Kurosaki T; O-Wang J
    DNA Repair (Amst); 2006 Nov; 5(11):1384-91. PubMed ID: 16890500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Error rate and specificity of human and murine DNA polymerase eta.
    Matsuda T; Bebenek K; Masutani C; Rogozin IB; Hanaoka F; Kunkel TA
    J Mol Biol; 2001 Sep; 312(2):335-46. PubMed ID: 11554790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.