These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11205729)

  • 1. Formation and isolation of spherical fine protein microparticles through lyophilization of protein-poly(ethylene glycol) aqueous mixture.
    Morita T; Horikiri Y; Yamahara H; Suzuki T; Yoshino H
    Pharm Res; 2000 Nov; 17(11):1367-73. PubMed ID: 11205729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of gelatin microparticles by co-lyophilization with poly(ethylene glycol): characterization and application to entrapment into biodegradable microspheres.
    Morita T; Horikiri Y; Suzuki T; Yoshino H
    Int J Pharm; 2001 May; 219(1-2):127-37. PubMed ID: 11337173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of bovine serum albumin complexed with PEG-poly(L-histidine) diblock copolymer in PLGA microspheres.
    Kim JH; Taluja A; Knutson K; Han Bae Y
    J Control Release; 2005 Dec; 109(1-3):86-100. PubMed ID: 16266769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism of improved structural integrity of protein in polymer based microsphere delivery system.
    Rawat S; Kohli N; Suri CR; Sahoo DK
    Mol Pharm; 2012 Sep; 9(9):2403-14. PubMed ID: 22724678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-free microencapsulation of proteins within PLGA microparticles by spray drying using PEG-assisted protein solubilization technique in organic solvent.
    Mok H; Park TG
    Eur J Pharm Biopharm; 2008 Sep; 70(1):137-44. PubMed ID: 18515053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encapsulation of bovine serum albumin in poly(lactide-co-glycolide) microspheres by the solid-in-oil-in-water technique.
    Castellanos IJ; Carrasquillo KG; López JD; Alvarez M; Griebenow K
    J Pharm Pharmacol; 2001 Feb; 53(2):167-78. PubMed ID: 11273012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmotic pressure driven protein release from viscous liquid, hydrophobic polymers based on 5-ethylene ketal ε-caprolactone: potential and mechanism.
    Babasola IO; Zhang W; Amsden BG
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):765-72. PubMed ID: 23665446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of additives and processing parameters on the initial burst release of protein from poly(lactic-co-glycolic acid) microspheres.
    Zheng CH; Gao JQ; Liang WQ; Yu HY; Zhang YL
    PDA J Pharm Sci Technol; 2006; 60(1):54-9. PubMed ID: 17089678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applicability of various amphiphilic polymers to the modification of protein release kinetics from biodegradable reservoir-type microspheres.
    Morita T; Horikiri Y; Suzuki T; Yoshino H
    Eur J Pharm Biopharm; 2001 Jan; 51(1):45-53. PubMed ID: 11154903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization and controlled release of bovine serum albumin encapsulated in poly(D, L-lactide) and poly(ethylene glycol) microsphere blends.
    Jiang W; Schwendeman SP
    Pharm Res; 2001 Jun; 18(6):878-85. PubMed ID: 11474795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of lyophilization on the structure and phase changes of PEGylated-bovine serum albumin.
    Tattini V; Parra DF; Polakiewicz B; Pitombo RN
    Int J Pharm; 2005 Nov; 304(1-2):124-34. PubMed ID: 16188407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths.
    Lazos D; Franzka S; Ulbricht M
    Langmuir; 2005 Sep; 21(19):8774-84. PubMed ID: 16142960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of protein-loaded poly(epsilon-caprolactone) microparticles based on a factorial design.
    Lin WJ; Huang LI; Chang RR
    J Microencapsul; 2001; 18(2):183-9. PubMed ID: 11253935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin particle formation in supersaturated aqueous solutions of poly(ethylene glycol).
    Bromberg L; Rashba-Step J; Scott T
    Biophys J; 2005 Nov; 89(5):3424-33. PubMed ID: 16254391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein deposition from dry powder inhalers: fine particle multiplets as performance modifiers.
    Lucas P; Anderson K; Staniforth JN
    Pharm Res; 1998 Apr; 15(4):562-9. PubMed ID: 9587952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of a novel excipient poly(ethylene glycol)-b-poly(L-histidine) in retention of physical stability of insulin at aqueous/organic interface.
    Taluja A; Bae YH
    Mol Pharm; 2007; 4(4):561-70. PubMed ID: 17439239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. POE-PEG-POE triblock copolymeric microspheres containing protein. I. Preparation and characterization.
    Yang YY; Wan JP; Chung TS; Pallathadka PK; Ng S; Heller J
    J Control Release; 2001 Jul; 75(1-2):115-28. PubMed ID: 11451502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein spray-freeze drying. Effect of atomization conditions on particle size and stability.
    Costantino HR; Firouzabadian L; Hogeland K; Wu C; Beganski C; Carrasquillo KG; Córdova M; Griebenow K; Zale SE; Tracy MA
    Pharm Res; 2000 Nov; 17(11):1374-83. PubMed ID: 11205730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of polysaccharide glassy microparticles with stabilization of proteins.
    Yuan W; Geng Y; Wu F; Liu Y; Guo M; Zhao H; Jin T
    Int J Pharm; 2009 Jan; 366(1-2):154-9. PubMed ID: 18835346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the covalent modification of horseradish peroxidase with poly(ethylene glycol) on the activity and stability upon encapsulation in polyester microspheres.
    Al-Azzam W; Pastrana EA; King B; Méndez J; Griebenow K
    J Pharm Sci; 2005 Aug; 94(8):1808-19. PubMed ID: 15986459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.