BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11205956)

  • 1. Interactions between Zygosaccharomyces mellis and Wallemia sebi in diluted molasses.
    Vindeløv J; Arneborg N
    Int J Food Microbiol; 2001 Jan; 63(1-2):73-9. PubMed ID: 11205956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of temperature, water activity, and syrup film composition on the growth of Wallemia sebi: development and assessment of a model predicting growth lags in syrup agar and crystalline sugar.
    Vindeløv J; Arneborg N
    Appl Environ Microbiol; 2002 Apr; 68(4):1652-7. PubMed ID: 11916681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saccharomyces cerevisiae and Zygosaccharomyces mellis exhibit different hyperosmotic shock responses.
    Vindeløv J; Arneborg N
    Yeast; 2002 Mar; 19(5):429-39. PubMed ID: 11921091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological responses to high sugar concentrations differ from adaptation to high salt concentrations in the xerophilic fungi Wallemia spp.
    Kralj Kunčič M; Zajc J; Drobne D; Pipan Tkalec Z; Gunde-Cimerman N
    Fungal Biol; 2013; 117(7-8):466-78. PubMed ID: 23931114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zygosaccharomyces lentus: a significant new osmophilic, preservative-resistant spoilage yeast, capable of growth at low temperature.
    Steels H; James SA; Roberts IN; Stratford M
    J Appl Microbiol; 1999 Oct; 87(4):520-7. PubMed ID: 10583679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic sugar metabolism in the spoilage yeast Zygosaccharomyces bailii.
    Merico A; Capitanio D; Vigentini I; Ranzi BM; Compagno C
    FEMS Yeast Res; 2003 Dec; 4(3):277-83. PubMed ID: 14654432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of water activity and temperature on the growth of Wallemia sebi: application of a predictive model.
    Patriarca A; Vaamonde G; Fernández Pinto V; Comerio R
    Int J Food Microbiol; 2001 Aug; 68(1-2):61-7. PubMed ID: 11545221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Production Method for High-Fructose Glucose Syrup from Sucrose-Containing Biomass by a Newly Isolated Strain of Osmotolerant Meyerozyma guilliermondii.
    Khattab SM; Kodaki T
    J Microbiol Biotechnol; 2016 Apr; 26(4):675-83. PubMed ID: 26718465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of ethanol by filamentous and yeast-like forms of Mucor indicus from fructose, glucose, sucrose, and molasses.
    Sharifia M; Karimi K; Taherzadeh MJ
    J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1253-9. PubMed ID: 18712551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the growth/no growth boundary of Zygosaccharomyces bailii in acidic conditions: a contribution to the alternative method to preserve foods without using chemical preservatives.
    Dang TD; Mertens L; Vermeulen A; Geeraerd AH; Van Impe JF; Debevere J; Devlieghere F
    Int J Food Microbiol; 2010 Jan; 137(1):1-12. PubMed ID: 19939483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of temperature, water activity and pH on growth of some xerophilic fungi.
    Gock MA; Hocking AD; Pitt JI; Poulos PG
    Int J Food Microbiol; 2003 Feb; 81(1):11-9. PubMed ID: 12423914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilized Sclerotinia sclerotiorum invertase to produce invert sugar syrup from industrial beet molasses by-product.
    Mouelhi R; Abidi F; Galai S; Marzouki MN
    World J Microbiol Biotechnol; 2014 Mar; 30(3):1063-73. PubMed ID: 24142426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined effects of pH and sugar on growth rate of Zygosaccharomyces rouxii, a bakery product spoilage yeast.
    Membré JM; Kubaczka M; Chéné C
    Appl Environ Microbiol; 1999 Nov; 65(11):4921-5. PubMed ID: 10543804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Culture medium optimization for osmotolerant yeasts by use of a parallel fermenter system and rapid microbiological testing.
    Pfannebecker J; Schiffer-Hetz C; Fröhlich J; Becker B
    J Microbiol Methods; 2016 Nov; 130():14-22. PubMed ID: 27566474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and quantification of Wallemia sebi in aerosols by real-time PCR, conventional PCR, and cultivation.
    Zeng QY; Westermark SO; Rasmuson-Lestander A; Wang XR
    Appl Environ Microbiol; 2004 Dec; 70(12):7295-302. PubMed ID: 15574929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of fingerprinting techniques to assess genotype variation among Zygosaccharomyces strains.
    Dakal TC; Solieri L; Giudici P
    Food Microbiol; 2018 Jun; 72():135-145. PubMed ID: 29407390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occurrence of xerophilic fungi in bakery gingerbread production.
    Vytrasová J; Pribánová P; Marvanová L
    Int J Food Microbiol; 2002 Jan; 72(1-2):91-6. PubMed ID: 11843418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of fructose and ethanol from sugar beet molasses using Saccharomyces cerevisiae ATCC 36858.
    Atiyeh H; Duvnjak Z
    Biotechnol Prog; 2002; 18(2):234-9. PubMed ID: 11934290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model of the specific growth rate inhibition by weak acids in yeasts based on energy requirements.
    Quintas C; Leyva JS; Sotoca R; Loureiro-Dias MC; Peinado JM
    Int J Food Microbiol; 2005 Apr; 100(1-3):125-30. PubMed ID: 15854698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling of the growth/no growth interface of Wallemia sebi and Eurotium herbariorum as a function of pH, aw and ethanol concentration.
    Deschuyffeleer N; Vermeulen A; Daelman J; Castelein E; Eeckhout M; Devlieghere F
    Int J Food Microbiol; 2015 Jan; 192():77-85. PubMed ID: 25317503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.