These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 11206063)
1. Thermal stability of Clostridium pasteurianum rubredoxin: deconvoluting the contributions of the metal site and the protein. Bonomi F; Fessas D; Iametti S; Kurtz DM; Mazzini S Protein Sci; 2000 Dec; 9(12):2413-26. PubMed ID: 11206063 [TBL] [Abstract][Full Text] [Related]
2. Thermal stability of the [Fe(SCys)(4)] site in Clostridium pasteurianum rubredoxin: contributions of the local environment and Cys ligand protonation. Bonomi F; Burden AE; Eidsness MK; Fessas D; Iametti S; Kurtz DM; Mazzini S; Scott RA; Zeng Q J Biol Inorg Chem; 2002 Apr; 7(4-5):427-36. PubMed ID: 11941500 [TBL] [Abstract][Full Text] [Related]
3. Contribution of the [FeII(SCys)4] site to the thermostability of rubredoxins. Bonomi F; Eidsness MK; Iametti S; Kurtz DM; Mazzini S; Morleo A J Biol Inorg Chem; 2004 Apr; 9(3):297-306. PubMed ID: 14770302 [TBL] [Abstract][Full Text] [Related]
4. Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein. Dauter Z; Wilson KS; Sieker LC; Moulis JM; Meyer J Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8836-40. PubMed ID: 8799113 [TBL] [Abstract][Full Text] [Related]
5. Unfolding mechanism of rubredoxin from Pyrococcus furiosus. Cavagnero S; Zhou ZH; Adams MW; Chan SI Biochemistry; 1998 Mar; 37(10):3377-85. PubMed ID: 9521658 [TBL] [Abstract][Full Text] [Related]
6. Determinants of protein hyperthermostability: purification and amino acid sequence of rubredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus and secondary structure of the zinc adduct by NMR. Blake PR; Park JB; Bryant FO; Aono S; Magnuson JK; Eccleston E; Howard JB; Summers MF; Adams MW Biochemistry; 1991 Nov; 30(45):10885-95. PubMed ID: 1932012 [TBL] [Abstract][Full Text] [Related]
7. Absence of kinetic thermal stabilization in a hyperthermophile rubredoxin indicated by 40 microsecond folding in the presence of irreversible denaturation. LeMaster DM; Tang J; Hernández G Proteins; 2004 Oct; 57(1):118-27. PubMed ID: 15326598 [TBL] [Abstract][Full Text] [Related]
8. Contribution of the multi-turn segment in the reversible thermal stability of hyperthermophile rubredoxin: NMR thermal chemical exchange analysis of sequence hybrids. LeMaster DM; Tang J; Paredes DI; Hernández G Biophys Chem; 2005 Jun; 116(1):57-65. PubMed ID: 15911082 [TBL] [Abstract][Full Text] [Related]
9. Crystallographic studies of V44 mutants of Clostridium pasteurianum rubredoxin: effects of side-chain size on reduction potential. Park IY; Eidsness MK; Lin IJ; Gebel EB; Youn B; Harley JL; Machonkin TE; Frederick RO; Markley JL; Smith ET; Ichiye T; Kang C Proteins; 2004 Nov; 57(3):618-25. PubMed ID: 15382226 [TBL] [Abstract][Full Text] [Related]
10. Enhanced thermal stability achieved without increased conformational rigidity at physiological temperatures: spatial propagation of differential flexibility in rubredoxin hybrids. LeMaster DM; Tang J; Paredes DI; Hernández G Proteins; 2005 Nov; 61(3):608-16. PubMed ID: 16130131 [TBL] [Abstract][Full Text] [Related]
11. Reduced temperature dependence of collective conformational opening in a hyperthermophile rubredoxin. Hernández G; LeMaster DM Biochemistry; 2001 Dec; 40(48):14384-91. PubMed ID: 11724550 [TBL] [Abstract][Full Text] [Related]
12. 2D 1H and 3D 1H-15N NMR of zinc-rubredoxins: contributions of the beta-sheet to thermostability. Richie KA; Teng Q; Elkin CJ; Kurtz DM Protein Sci; 1996 May; 5(5):883-94. PubMed ID: 8732760 [TBL] [Abstract][Full Text] [Related]
13. Dissecting contributions to the thermostability of Pyrococcus furiosus rubredoxin: beta-sheet chimeras. Eidsness MK; Richie KA; Burden AE; Kurtz DM; Scott RA Biochemistry; 1997 Aug; 36(34):10406-13. PubMed ID: 9265620 [TBL] [Abstract][Full Text] [Related]
15. Metal-substituted derivatives of the rubredoxin from Clostridium pasteurianum. Maher M; Cross M; Wilce MC; Guss JM; Wedd AG Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):298-303. PubMed ID: 14747706 [TBL] [Abstract][Full Text] [Related]
16. Structural basis for thermostability in aporubredoxins from Pyrococcus furiosus and Clostridium pasteurianum. Zartler ER; Jenney FE; Terrell M; Eidsness MK; Adams MW; Prestegard JH Biochemistry; 2001 Jun; 40(24):7279-90. PubMed ID: 11401576 [TBL] [Abstract][Full Text] [Related]
17. Assembly of a [2Fe-2S]2+ cluster in a molecular variant of Clostridium pasteurianum rubredoxin. Meyer J; Gagnon J; Gaillard J; Lutz M; Achim C; Münck E; Pétillot Y; Colangelo CM; Scott RA Biochemistry; 1997 Oct; 36(43):13374-80. PubMed ID: 9341230 [TBL] [Abstract][Full Text] [Related]
18. Probing the mechanism of rubredoxin thermal unfolding in the absence of salt bridges by temperature jump experiments. Henriques BJ; Saraiva LM; Gomes CM Biochem Biophys Res Commun; 2005 Aug; 333(3):839-44. PubMed ID: 15975557 [TBL] [Abstract][Full Text] [Related]
19. Solution-state structure by NMR of zinc-substituted rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus. Blake PR; Park JB; Zhou ZH; Hare DR; Adams MW; Summers MF Protein Sci; 1992 Nov; 1(11):1508-21. PubMed ID: 1303769 [TBL] [Abstract][Full Text] [Related]
20. NMR and X-ray analysis of structural additivity in metal binding site-swapped hybrids of rubredoxin. LeMaster DM; Anderson JS; Wang L; Guo Y; Li H; Hernández G BMC Struct Biol; 2007 Dec; 7():81. PubMed ID: 18053245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]