BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11206285)

  • 21. Postural control of three-dimensional prehension movements.
    Desmurget M; Prablanc C
    J Neurophysiol; 1997 Jan; 77(1):452-64. PubMed ID: 9120586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Movement kinematics in prehension are affected by grasping objects of different mass.
    Eastough D; Edwards MG
    Exp Brain Res; 2007 Jan; 176(1):193-8. PubMed ID: 17072606
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Manual asymmetries in grasp pre-shaping and transport-grasp coordination.
    Tretriluxana J; Gordon J; Winstein CJ
    Exp Brain Res; 2008 Jun; 188(2):305-15. PubMed ID: 18437369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pointing movements may be produced in different frames of reference depending on the task demand.
    Ghafouri M; Archambault PS; Adamovich SV; Feldman AG
    Brain Res; 2002 Mar; 929(1):117-28. PubMed ID: 11852038
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of aperture closure during reach-to-grasp movements in Parkinson's disease.
    Rand MK; Smiley-Oyen AL; Shimansky YP; Bloedel JR; Stelmach GE
    Exp Brain Res; 2006 Jan; 168(1-2):131-42. PubMed ID: 16307233
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A model of the coupling between grip aperture and hand transport during human prehension.
    Hu Y; Osu R; Okada M; Goodale MA; Kawato M
    Exp Brain Res; 2005 Nov; 167(2):301-4. PubMed ID: 16217646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered coordination patterns in parkinsonian patients during trunk-assisted prehension.
    Wang J; Bohan M; Leis BC; Stelmach GE
    Parkinsonism Relat Disord; 2006 May; 12(4):211-22. PubMed ID: 16460987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coordination deficits during trunk-assisted reach-to-grasp movements in Parkinson's disease.
    Rand MK; Van Gemmert AW; Hossain AB; Stelmach GE
    Exp Brain Res; 2014 Jan; 232(1):61-74. PubMed ID: 24105594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multijoint grasping movements. Simulated and observed effects of object location, object size, and initial aperture.
    Meulenbroek RG; Rosenbaum DA; Jansen C; Vaughan J; Vogt S
    Exp Brain Res; 2001 May; 138(2):219-34. PubMed ID: 11417463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trunk-assisted prehension: specification of body segments with imposed temporal constraints.
    Seidler RD; Stelmach GE
    J Mot Behav; 2000 Dec; 32(4):379-89. PubMed ID: 11114230
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Target viewing time and velocity effects on prehension.
    Mason AH; Carnahan H
    Exp Brain Res; 1999 Jul; 127(1):83-94. PubMed ID: 10424417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of stimulus color on the control of reaching-grasping movements.
    Gentilucci M; Benuzzi F; Bertolani L; Gangitano M
    Exp Brain Res; 2001 Mar; 137(1):36-44. PubMed ID: 11310170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alterations in transport path differentially affect temporal and spatial movement parameters.
    Alberts JL; Saling M; Stelmach GE
    Exp Brain Res; 2002 Apr; 143(4):417-25. PubMed ID: 11914786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Initiation of rapid reach-and-grasp balance reactions: is a pre-formed visuospatial map used in controlling the initial arm trajectory?
    Ghafouri M; McIlroy WE; Maki BE
    Exp Brain Res; 2004 Apr; 155(4):532-6. PubMed ID: 14985902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Low frequency repetitive transcranial magnetic stimulation to the non-lesioned hemisphere improves paretic arm reach-to-grasp performance after chronic stroke.
    Tretriluxana J; Kantak S; Tretriluxana S; Wu AD; Fisher BE
    Disabil Rehabil Assist Technol; 2013 Mar; 8(2):121-4. PubMed ID: 23244391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Grasping component alterations and limb transport.
    Timmann D; Stelmach GE; Bloedel JR
    Exp Brain Res; 1996 Mar; 108(3):486-92. PubMed ID: 8801128
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Palmar arch dynamics during reach-to-grasp tasks.
    Sangole AP; Levin MF
    Exp Brain Res; 2008 Oct; 190(4):443-52. PubMed ID: 18641977
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Posture of the arm when grasping spheres to place them elsewhere.
    Schot WD; Brenner E; Smeets JB
    Exp Brain Res; 2010 Jul; 204(2):163-71. PubMed ID: 20567809
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of prehension in hemiparetic cerebral palsy: similarities and differences between the ipsi- and contra-lesional sides of the body.
    Steenbergen B; van der Kamp J
    Dev Med Child Neurol; 2004 May; 46(5):325-32. PubMed ID: 15132263
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of normative hand movements during two functional upper limb tasks.
    Valevicius AM; Boser QA; Lavoie EB; Murgatroyd GS; Pilarski PM; Chapman CS; Vette AH; Hebert JS
    PLoS One; 2018; 13(6):e0199549. PubMed ID: 29928022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.