BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 11207363)

  • 1. MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis.
    Abbott GW; Butler MH; Bendahhou S; Dalakas MC; Ptacek LJ; Goldstein SA
    Cell; 2001 Jan; 104(2):217-31. PubMed ID: 11207363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation and protonation of neighboring MiRP2 sites: function and pathophysiology of MiRP2-Kv3.4 potassium channels in periodic paralysis.
    Abbott GW; Butler MH; Goldstein SA
    FASEB J; 2006 Feb; 20(2):293-301. PubMed ID: 16449802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MinK-related peptide 2 modulates Kv2.1 and Kv3.1 potassium channels in mammalian brain.
    McCrossan ZA; Lewis A; Panaghie G; Jordan PN; Christini DJ; Lerner DJ; Abbott GW
    J Neurosci; 2003 Sep; 23(22):8077-91. PubMed ID: 12954870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of association of the potassium channel-associated peptide MiRP2-R83H variant with periodic paralysis.
    Sternberg D; Tabti N; Fournier E; Hainque B; Fontaine B
    Neurology; 2003 Sep; 61(6):857-9. PubMed ID: 14504341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MinK, MiRP1, and MiRP2 diversify Kv3.1 and Kv3.2 potassium channel gating.
    Lewis A; McCrossan ZA; Abbott GW
    J Biol Chem; 2004 Feb; 279(9):7884-92. PubMed ID: 14679187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The MiRP2-Kv3.4 potassium channel: muscling in on Alzheimer's disease.
    Choi E; Abbott GW
    Mol Pharmacol; 2007 Sep; 72(3):499-501. PubMed ID: 17595326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disease-associated mutations in KCNE potassium channel subunits (MiRPs) reveal promiscuous disruption of multiple currents and conservation of mechanism.
    Abbott GW; Goldstein SA
    FASEB J; 2002 Mar; 16(3):390-400. PubMed ID: 11874988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular evidence for a role of Shaw (Kv3) potassium channel subunits in potassium currents of dog atrium.
    Yue L; Wang Z; Rindt H; Nattel S
    J Physiol; 2000 Sep; 527 Pt 3(Pt 3):467-78. PubMed ID: 10990534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periodic paralysis mutation MiRP2-R83H in controls: Interpretations and general recommendation.
    Jurkat-Rott K; Lehmann-Horn F
    Neurology; 2004 Mar; 62(6):1012-5. PubMed ID: 15037716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of S4 charges in voltage-dependent and voltage-independent KCNQ1 potassium channel complexes.
    Panaghie G; Abbott GW
    J Gen Physiol; 2007 Feb; 129(2):121-33. PubMed ID: 17227916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobic mutations alter the movement of Mg2+ in the pore of voltage-gated potassium channels.
    Harris RE; Isacoff EY
    Biophys J; 1996 Jul; 71(1):209-19. PubMed ID: 8804604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow inactivation conserved in heteromultimeric voltage-dependent K+ channels between Shaker (Kv1) and Shaw (Kv3) subfamilies.
    Shahidullah M; Hoshi N; Yokoyama S; Kawamura T; Higashida H
    FEBS Lett; 1995 Sep; 371(3):307-10. PubMed ID: 7556617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of KCNE subunits with the KCNQ1 K+ channel pore.
    Panaghie G; Tai KK; Abbott GW
    J Physiol; 2006 Feb; 570(Pt 3):455-67. PubMed ID: 16308347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Shaw-related potassium channel gene, Kv3.1, on human chromosome 11, encodes the type l K+ channel in T cells.
    Grissmer S; Ghanshani S; Dethlefs B; McPherson JD; Wasmuth JJ; Gutman GA; Cahalan MD; Chandy KG
    J Biol Chem; 1992 Oct; 267(29):20971-9. PubMed ID: 1400413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a Kv3.4 channel in corneal epithelial cells.
    Wang L; Fyffe RE; Lu L
    Invest Ophthalmol Vis Sci; 2004 Jun; 45(6):1796-803. PubMed ID: 15161842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of Kv3 potassium channels expressed in CHO cells by a nitric oxide-activated phosphatase.
    Moreno H; Vega-Saenz de Miera E; Nadal MS; Amarillo Y; Rudy B
    J Physiol; 2001 Feb; 530(Pt 3):345-58. PubMed ID: 11281123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stichodactyla helianthus peptide, a pharmacological tool for studying Kv3.2 channels.
    Yan L; Herrington J; Goldberg E; Dulski PM; Bugianesi RM; Slaughter RS; Banerjee P; Brochu RM; Priest BT; Kaczorowski GJ; Rudy B; Garcia ML
    Mol Pharmacol; 2005 May; 67(5):1513-21. PubMed ID: 15709110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mutation in the pore region of HERG K+ channels expressed in Xenopus oocytes reduces rectification by shifting the voltage dependence of inactivation.
    Zou A; Xu QP; Sanguinetti MC
    J Physiol; 1998 May; 509 ( Pt 1)(Pt 1):129-37. PubMed ID: 9547387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle and motor-skill dysfunction in a K+ channel-deficient mouse are not due to altered muscle excitability or fiber type but depend on the genetic background.
    Sánchez JA; Ho CS; Vaughan DM; Garcia MC; Grange RW; Joho RH
    Pflugers Arch; 2000 May; 440(1):34-41. PubMed ID: 10863995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. U-type inactivation of Kv3.1 and Shaker potassium channels.
    Klemic KG; Kirsch GE; Jones SW
    Biophys J; 2001 Aug; 81(2):814-26. PubMed ID: 11463627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.