BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 11207446)

  • 1. Kinetic studies on mitochondrial F(1)-ATPase from crayfish (Orconectes virilis) gills.
    Li Z; Neufeld GJ
    Comp Biochem Physiol B Biochem Mol Biol; 2001 Feb; 128(2):339-50. PubMed ID: 11207446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of mitochondrial F(1)-ATPase from crayfish (Orconectes virilis) gills.
    Li Z; Neufeld GJ
    Comp Biochem Physiol B Biochem Mol Biol; 2001 Feb; 128(2):325-38. PubMed ID: 11207445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The beta G156C substitution in the F1-ATPase from the thermophilic Bacillus PS3 affects catalytic site cooperativity by destabilizing the closed conformation of the catalytic site.
    Bandyopadhyay S; Valder CR; Huynh HG; Ren H; Allison WS
    Biochemistry; 2002 Dec; 41(48):14421-9. PubMed ID: 12450409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of apparent negative cooperativity of F(1)-ATPase.
    Ono S; Hara KY; Hirao J; Matsui T; Noji H; Yoshida M; Muneyuki E
    Biochim Biophys Acta; 2003 Oct; 1607(1):35-44. PubMed ID: 14556911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides.
    Salcedo G; Cano-Sánchez P; de Gómez-Puyou MT; Velázquez-Campoy A; García-Hernández E
    Biochim Biophys Acta; 2014 Jan; 1837(1):44-50. PubMed ID: 23994287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The alpha 3(beta Y341W)3 gamma subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 fails to dissociate ADP when MgATP is hydrolyzed at a single catalytic site and attains maximal velocity when three catalytic sites are saturated with MgATP.
    Dou C; Fortes PA; Allison WS
    Biochemistry; 1998 Nov; 37(47):16757-64. PubMed ID: 9843446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The presence of phosphate at a catalytic site suppresses the formation of the MgADP-inhibited form of F(1)-ATPase.
    Mitome N; Ono S; Suzuki T; Shimabukuro K; Muneyuki E; Yoshida M
    Eur J Biochem; 2002 Jan; 269(1):53-60. PubMed ID: 11784298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of nucleotide binding by a vacuolar proton-translocating adenosine triphosphatase.
    Webster LC; Apps DK
    Eur J Biochem; 1996 Aug; 240(1):156-64. PubMed ID: 8797849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does F1-ATPase have a catalytic site that preferentially binds MgADP?
    Mao HZ; Gray WD; Weber J
    FEBS Lett; 2006 Jul; 580(17):4131-5. PubMed ID: 16828083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of stimulation of MgATPase activity of chloroplast F1-ATPase by non-catalytic adenine-nucleotide binding. Acceleration of the ATP-dependent release of inhibitory ADP from a catalytic site.
    Murataliev MB; Boyer PD
    Eur J Biochem; 1992 Oct; 209(2):681-7. PubMed ID: 1425675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis.
    Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD
    Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenine nucleotide binding at a noncatalytic site of mitochondrial F1-ATPase accelerates a Mg(2+)- and ADP-dependent inactivation during ATP hydrolysis.
    Murataliev MB
    Biochemistry; 1992 Dec; 31(51):12885-92. PubMed ID: 1463756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The binding mechanism of the yeast F1-ATPase inhibitory peptide: role of catalytic intermediates and enzyme turnover.
    Corvest V; Sigalat C; Venard R; Falson P; Mueller DM; Haraux F
    J Biol Chem; 2005 Mar; 280(11):9927-36. PubMed ID: 15640141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent modification of the non-catalytic sites of the H(+)-ATPase from chloroplasts with 2-azido-[alpha-(32)P]ATP and its effect on ATP synthesis and ATP hydrolysis.
    Possmayer FE; Hartog AF; Berden JA; Gräber P
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):378-400. PubMed ID: 11342174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The bound adenine nucleotides of purified bovine mitochondrial ATP synthase.
    Beharry S; Bragg PD
    Eur J Biochem; 1996 Aug; 240(1):165-72. PubMed ID: 8797850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane bound and soluble adenosine triphosphatase of Escherichia coli K 12. Kinetic properties of the basal and trypsin-stimulated activities.
    Carreira J; Muñoz E
    Mol Cell Biochem; 1975 Nov; 9(2):85-95. PubMed ID: 127930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of mitochondrial F1-ATPase with trinitrophenyl derivatives of ATP. Photoaffinity labeling of binding sites with 2-azido-2',3'-O-(4,6-trinitrophenyl)adenosine 5'-triphosphate.
    Murataliev MB
    Eur J Biochem; 1995 Sep; 232(2):578-85. PubMed ID: 7556210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent modification of the catalytic sites of the H(+)-ATPase from chloroplasts, CF(0)F(1), with 2-azido-[alpha-(32)P]ADP: modification of the catalytic site 2 (loose) and the catalytic site 3 (open) impairs multi-site, but not uni-site catalysis of both ATP synthesis and ATP hydrolysis.
    Possmayer FE; Hartog AF; Berden JA; Gräber P
    Biochim Biophys Acta; 2000 Jan; 1456(2-3):77-98. PubMed ID: 10627297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The alpha 3 beta 3 gamma complex of the F1-ATPase from thermophilic Bacillus PS3 containing the alpha D261N substitution fails to dissociate inhibitory MgADP from a catalytic site when ATP binds to noncatalytic sites.
    Jault JM; Matsui T; Jault FM; Kaibara C; Muneyuki E; Yoshida M; Kagawa Y; Allison WS
    Biochemistry; 1995 Dec; 34(50):16412-8. PubMed ID: 8845368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probes of inhibition of Escherichia coli F(1)-ATPase by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole in the presence of MgADP and MgATP support a bi-site mechanism of ATP hydrolysis by the enzyme.
    Bulygin VV; Milgrom YM
    Biochemistry (Mosc); 2010 Mar; 75(3):327-35. PubMed ID: 20370611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.