BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 11207799)

  • 1. Developmental and cellular expression pattern of epithelial sodium channel alpha, beta and gamma subunits in the inner ear of the rat.
    Gründer S; Müller A; Ruppersberg JP
    Eur J Neurosci; 2001 Feb; 13(4):641-8. PubMed ID: 11207799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunohistochemical localization of the epithelial sodium channel in the rat inner ear.
    Zhong SX; Liu ZH
    Hear Res; 2004 Jul; 193(1-2):1-8. PubMed ID: 15219314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of ENaC-mediated sodium transport by glucocorticoids in Reissner's membrane epithelium.
    Kim SH; Kim KX; Raveendran NN; Wu T; Pondugula SR; Marcus DC
    Am J Physiol Cell Physiol; 2009 Mar; 296(3):C544-57. PubMed ID: 19144862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of mRNAs encoding alpha and beta subunit isoforms of Na,K-ATPase in the vestibular labyrinth and endolymphatic sac of the rat.
    Fina M; Ryan A
    Mol Cell Neurosci; 1994 Dec; 5(6):604-13. PubMed ID: 7704435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Location and function of the epithelial Na channel in the cochlea.
    Couloigner V; Fay M; Djelidi S; Farman N; Escoubet B; Runembert I; Sterkers O; Friedlander G; Ferrary E
    Am J Physiol Renal Physiol; 2001 Feb; 280(2):F214-22. PubMed ID: 11208596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of Na+/myo-inositol cotransporter mRNA in the inner ear of the rat.
    Minami Y; Shimada S; Inoue K; Morimura H; Miyai A; Yamauchi A; Matsunaga T; Tohyama M
    Brain Res Mol Brain Res; 1996 Jan; 35(1-2):319-24. PubMed ID: 8717370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endolymphatic Na⁺ and K⁺ concentrations during cochlear growth and enlargement in mice lacking Slc26a4/pendrin.
    Li X; Zhou F; Marcus DC; Wangemann P
    PLoS One; 2013; 8(5):e65977. PubMed ID: 23741519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of sodium transport in the inner ear.
    Kim SH; Marcus DC
    Hear Res; 2011 Oct; 280(1-2):21-9. PubMed ID: 21620939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression patterns of aquaporins in the inner ear: evidence for concerted actions of multiple types of aquaporins to facilitate water transport in the cochlea.
    Huang D; Chen P; Chen S; Nagura M; Lim DJ; Lin X
    Hear Res; 2002 Mar; 165(1-2):85-95. PubMed ID: 12031518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cystic fibrosis transmembrane conductance regulator in the endolymphatic sac of the rat.
    Matsubara A; Miyashita T; Inamoto R; Hoshikawa H; Mori N
    Auris Nasus Larynx; 2014 Oct; 41(5):409-12. PubMed ID: 24598307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presence of FXYD6 in the endolymphatic sac epithelia.
    Miyashita T; Akiyama K; Inamoto R; Matsubara A; Nakagawa T; Yamaguchi F; Tokuda M; Mori N
    Neurosci Lett; 2012 Mar; 513(1):47-50. PubMed ID: 22343024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental changes of ENaC expression and function in the inner ear of pendrin knock-out mice as a perspective on the development of endolymphatic hydrops.
    Kim BG; Kim JY; Kim HN; Bok J; Namkung W; Choi JY; Kim SH
    PLoS One; 2014; 9(4):e95730. PubMed ID: 24752462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and immunolocalization of aquaporin-6 (Aqp6) in the rat inner ear.
    Taguchi D; Takeda T; Kakigi A; Okada T; Nishioka R; Kitano H
    Acta Otolaryngol; 2008 Aug; 128(8):832-40. PubMed ID: 18607959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence of NaK-ATPase isoforms during rat inner ear development and functional implications.
    Peters TA; Kuijpers W; Curfs JH
    Eur Arch Otorhinolaryngol; 2001 Feb; 258(2):67-73. PubMed ID: 11307608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization of mRNA encoding the P2X2 receptor subunit of the adenosine 5'-triphosphate-gated ion channel in the adult and developing rat inner ear by in situ hybridization.
    Housley GD; Luo L; Ryan AF
    J Comp Neurol; 1998 Apr; 393(4):403-14. PubMed ID: 9550147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunolocalization of Na+, K(+)-ATPase, Ca(++)-ATPase, calcium-binding proteins, and carbonic anhydrase in the guinea pig inner ear.
    Ichimiya I; Adams JC; Kimura RS
    Acta Otolaryngol; 1994 Mar; 114(2):167-76. PubMed ID: 8203199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion transport its regulation in the endolymphatic sac: suggestions for clinical aspects of Meniere's disease.
    Mori N; Miyashita T; Inamoto R; Matsubara A; Mori T; Akiyama K; Hoshikawa H
    Eur Arch Otorhinolaryngol; 2017 Apr; 274(4):1813-1820. PubMed ID: 27804084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of aquaporins 1, 2, and 3 and vasopressin type 2 receptor in the mouse inner ear.
    Takumida M; Kakigi A; Egami N; Nishioka R; Anniko M
    Acta Otolaryngol; 2012 Aug; 132(8):807-13. PubMed ID: 22768909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of pH regulating proteins H+ATPase and Cl-/HCO3- exchanger in the guinea pig inner ear.
    Stanković KM; Brown D; Alper SL; Adams JC
    Hear Res; 1997 Dec; 114(1-2):21-34. PubMed ID: 9447915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-type natriuretic peptide-like immunoreactivity in the rat inner ear.
    Suzuki M; Kitanishi T; Kitano H; Yazawa Y; Kitajima K; Takeda T; Tokunaga Y; Maeda T; Kimura H; Tooyama I
    Hear Res; 2000 Jan; 139(1-2):51-8. PubMed ID: 10601712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.