These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 11208159)

  • 1. The luminal domain of TGN38 interacts with integrin beta 1 and is involved in its trafficking.
    Wang J; Howell KE
    Traffic; 2000 Sep; 1(9):713-23. PubMed ID: 11208159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient trafficking of TGN38 from the endosome to the trans-Golgi network requires a free hydroxyl group at position 331 in the cytosolic domain.
    Roquemore EP; Banting G
    Mol Biol Cell; 1998 Aug; 9(8):2125-44. PubMed ID: 9693371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An electron microscopic study of TGN38/41 dynamics.
    Ladinsky MS; Howell KE
    J Cell Sci Suppl; 1993; 17():41-7. PubMed ID: 8144704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid dendritic transport of TGN38, a putative cargo receptor.
    McNamara JO; Grigston JC; VanDongen HM; VanDongen AM
    Brain Res Mol Brain Res; 2004 Aug; 127(1-2):68-78. PubMed ID: 15306122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cytosolic complex of p62 and rab6 associates with TGN38/41 and is involved in budding of exocytic vesicles from the trans-Golgi network.
    Jones SM; Crosby JR; Salamero J; Howell KE
    J Cell Biol; 1993 Aug; 122(4):775-88. PubMed ID: 8349729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-golgi network.
    Wilcke M; Johannes L; Galli T; Mayau V; Goud B; Salamero J
    J Cell Biol; 2000 Dec; 151(6):1207-20. PubMed ID: 11121436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the co-localization of the insulin-responsive glucose transporter (GLUT4) and the trans Golgi network marker TGN38 within 3T3-L1 adipocytes.
    Martin S; Reaves B; Banting G; Gould GW
    Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):743-9. PubMed ID: 8010955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of TGN38/41 leads to mislocalisation of gamma-adaptin.
    Reaves B; Banting G
    FEBS Lett; 1994 Sep; 351(3):448-56. PubMed ID: 8082813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specificity of interaction between adaptor-complex medium chains and the tyrosine-based sorting motifs of TGN38 and lgp120.
    Stephens DJ; Banting G
    Biochem J; 1998 Nov; 335 ( Pt 3)(Pt 3):567-72. PubMed ID: 9794796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of the lumenal domain of TGN38 and effects of elevated expression of TGN38 on glycoprotein secretion.
    Lee SS; Banting G
    Eur J Cell Biol; 2002 Nov; 81(11):609-21. PubMed ID: 12494998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct interaction of the trans-Golgi network membrane protein, TGN38, with the F-actin binding protein, neurabin.
    Stephens DJ; Banting G
    J Biol Chem; 1999 Oct; 274(42):30080-6. PubMed ID: 10514494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TGN38/41 recycles between the cell surface and the TGN: brefeldin A affects its rate of return to the TGN.
    Reaves B; Horn M; Banting G
    Mol Biol Cell; 1993 Jan; 4(1):93-105. PubMed ID: 8443412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of ARFRP1 (ADP-ribosylation factor-related protein 1) in post-Golgi membrane trafficking.
    Shin HW; Kobayashi H; Kitamura M; Waguri S; Suganuma T; Uchiyama Y; Nakayama K
    J Cell Sci; 2005 Sep; 118(Pt 17):4039-48. PubMed ID: 16129887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The trans-Golgi network can be dissected structurally and functionally from the cisternae of the Golgi complex by brefeldin A.
    Ladinsky MS; Howell KE
    Eur J Cell Biol; 1992 Oct; 59(1):92-105. PubMed ID: 1468449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GLUT4 recycles via a trans-Golgi network (TGN) subdomain enriched in Syntaxins 6 and 16 but not TGN38: involvement of an acidic targeting motif.
    Shewan AM; van Dam EM; Martin S; Luen TB; Hong W; Bryant NJ; James DE
    Mol Biol Cell; 2003 Mar; 14(3):973-86. PubMed ID: 12631717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serine 331 and tyrosine 333 are both involved in the interaction between the cytosolic domain of TGN38 and the mu2 subunit of the AP2 clathrin adaptor complex.
    Stephens DJ; Crump CM; Clarke AR; Banting G
    J Biol Chem; 1997 May; 272(22):14104-9. PubMed ID: 9162036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular localization analysis of the closely related Fps/Fes and Fer protein-tyrosine kinases suggests a distinct role for Fps/Fes in vesicular trafficking.
    Zirngibl R; Schulze D; Mirski SE; Cole SP; Greer PA
    Exp Cell Res; 2001 May; 266(1):87-94. PubMed ID: 11339827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TGN38 recycles basolaterally in polarized Madin-Darby canine kidney cells.
    Rajasekaran AK; Humphrey JS; Wagner M; Miesenböck G; Le Bivic A; Bonifacino JS; Rodriguez-Boulan E
    Mol Biol Cell; 1994 Oct; 5(10):1093-103. PubMed ID: 7865877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TGN38 cycles via the basolateral membrane of polarized Caco-2 cells.
    Reaves BJ; Roquemore EP; Luzio JP; Banting G
    Mol Membr Biol; 1998; 15(3):133-9. PubMed ID: 9859110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and regulation of constitutive transport intermediates involved in trafficking from the trans-Golgi network.
    McLauchlan HJ; James J; Lucocq JM; Ponnambalam S
    Cell Biol Int; 2001; 25(8):705-13. PubMed ID: 11482894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.