BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 11208798)

  • 1. Subunit interactions and glutamine utilization by Escherichia coli imidazole glycerol phosphate synthase.
    Klem TJ; Chen Y; Davisson VJ
    J Bacteriol; 2001 Feb; 183(3):989-96. PubMed ID: 11208798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate-induced changes in the ammonia channel for imidazole glycerol phosphate synthase.
    Myers RS; Jensen JR; Deras IL; Smith JL; Davisson VJ
    Biochemistry; 2003 Jun; 42(23):7013-22. PubMed ID: 12795596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction coupling through interdomain contacts in imidazole glycerol phosphate synthase.
    Myers RS; Amaro RE; Luthey-Schulten ZA; Davisson VJ
    Biochemistry; 2005 Sep; 44(36):11974-85. PubMed ID: 16142895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imidazole glycerol phosphate synthase: the glutamine amidotransferase in histidine biosynthesis.
    Klem TJ; Davisson VJ
    Biochemistry; 1993 May; 32(19):5177-86. PubMed ID: 8494895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and purification of imidazole glycerol phosphate synthase from Saccharomyces cerevisiae.
    Chittur SV; Chen Y; Davisson VJ
    Protein Expr Purif; 2000 Apr; 18(3):366-77. PubMed ID: 10733892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imidazole glycerol phosphate synthase from Thermotoga maritima. Quaternary structure, steady-state kinetics, and reaction mechanism of the bienzyme complex.
    Beismann-Driemeyer S; Sterner R
    J Biol Chem; 2001 Jun; 276(23):20387-96. PubMed ID: 11264293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex.
    Holinski A; Heyn K; Merkl R; Sterner R
    Proteins; 2017 Feb; 85(2):312-321. PubMed ID: 27936490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalysis uncoupling in a glutamine amidotransferase bienzyme by unblocking the glutaminase active site.
    List F; Vega MC; Razeto A; Häger MC; Sterner R; Wilmanns M
    Chem Biol; 2012 Dec; 19(12):1589-99. PubMed ID: 23261602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural elements in IGP synthase exclude water to optimize ammonia transfer.
    Amaro RE; Myers RS; Davisson VJ; Luthey-Schulten ZA
    Biophys J; 2005 Jul; 89(1):475-87. PubMed ID: 15849257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo evaluation of the interaction between the Escherichia coli IGP synthase subunits using the Bacterial Two-Hybrid system.
    Chioccioli S; Bogani P; Del Duca S; Castronovo LM; Vassallo A; Puglia AM; Fani R
    FEMS Microbiol Lett; 2020 Jul; 367(14):. PubMed ID: 32614412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of the Protein Interface Configuration for Allostery in Imidazole Glycerol Phosphate Synthase.
    Kneuttinger AC; Rajendran C; Simeth NA; Bruckmann A; König B; Sterner R
    Biochemistry; 2020 Jul; 59(29):2729-2742. PubMed ID: 32633500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Function of hisF and hisH gene products in histidine biosynthesis.
    Rieder G; Merrick MJ; Castorph H; Kleiner D
    J Biol Chem; 1994 May; 269(20):14386-90. PubMed ID: 8182043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of imidazole glycerol phosphate synthase from Thermus thermophilus HB8: open-closed conformational change and ammonia tunneling.
    Omi R; Mizuguchi H; Goto M; Miyahara I; Hayashi H; Kagamiyama H; Hirotsu K
    J Biochem; 2002 Nov; 132(5):759-65. PubMed ID: 12417026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism for acivicin inactivation of triad glutamine amidotransferases.
    Chittur SV; Klem TJ; Shafer CM; Davisson VJ
    Biochemistry; 2001 Jan; 40(4):876-87. PubMed ID: 11170408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fold-Independent Interface Residue Is Crucial for Complex Formation and Allosteric Signaling in Class I Glutamine Amidotransferases.
    Semmelmann F; Hupfeld E; Heizinger L; Merkl R; Sterner R
    Biochemistry; 2019 Jun; 58(22):2584-2588. PubMed ID: 31117390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamine-dependent nitrogen transfer in Escherichia coli asparagine synthetase B. Searching for the catalytic triad.
    Boehlein SK; Richards NG; Schuster SM
    J Biol Chem; 1994 Mar; 269(10):7450-7. PubMed ID: 7907328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited proteolysis of Escherichia coli cytidine 5'-triphosphate synthase. Identification of residues required for CTP formation and GTP-dependent activation of glutamine hydrolysis.
    Simard D; Hewitt KA; Lunn F; Iyengar A; Bearne SL
    Eur J Biochem; 2003 May; 270(10):2195-206. PubMed ID: 12752439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing an energy landscape for the novel function of a (beta/alpha)8 barrel: ammonia conduction through HisF.
    Amaro R; Tajkhorshid E; Luthey-Schulten Z
    Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7599-604. PubMed ID: 12799468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the four conserved histidine residues in the amidotransferase domain of carbamoyl phosphate synthetase.
    Miran SG; Chang SH; Raushel FM
    Biochemistry; 1991 Aug; 30(32):7901-7. PubMed ID: 1868065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the hinge loop linking the N- and C-terminal domains of the amidotransferase subunit of carbamoyl phosphate synthetase.
    Huang X; Raushel FM
    Arch Biochem Biophys; 2000 Aug; 380(1):174-80. PubMed ID: 10900147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.