These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 11208971)

  • 1. Effect of extracellular Ca2+ on the quinine-activated current of bullfrog taste receptor cells.
    Tsunenari T; Kaneko A
    J Physiol; 2001 Jan; 530(Pt 2):235-41. PubMed ID: 11208971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quinine-activated cationic conductance in vertebrate taste receptor cells.
    Tsunenari T; Hayashi Y; Orita M; Kurahashi T; Kaneko A; Mori T
    J Gen Physiol; 1996 Dec; 108(6):515-23. PubMed ID: 8972389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noise analysis of the quinine-induced current in frog taste receptor cells.
    Tsunenari T; Kaneko A
    Ann N Y Acad Sci; 1998 Nov; 855():148-9. PubMed ID: 9929596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation by bitter substances of a cationic channel in membrane patches excised from the bullfrog taste receptor cell.
    Tsunenari T; Kurahashi T; Kaneko A
    J Physiol; 1999 Sep; 519 Pt 2(Pt 2):397-404. PubMed ID: 10457058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apical K+ channels in Necturus taste cells. Modulation by intracellular factors and taste stimuli.
    Cummings TA; Kinnamon SC
    J Gen Physiol; 1992 Apr; 99(4):591-613. PubMed ID: 1597680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular K+ activates a K(+)- and H(+)-permeable conductance in frog taste receptor cells.
    Kolesnikov SS; Margolskee RF
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):415-32. PubMed ID: 9518702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-dependent expression of hypertonic effects on bullfrog taste nerve responses to salts and bitter substances.
    Mashiyama K; Nozawa Y; Ohtubo Y; Kumazawa T; Yoshii K
    Brain Res; 2014 Mar; 1556():1-9. PubMed ID: 24513402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quinine-HCl-induced modification of receptor potentials for taste stimuli in frog taste cells.
    Sato T; Sugimoto K
    Zoolog Sci; 1995 Feb; 12(1):45-52. PubMed ID: 7795491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular protons activate K+ current in a subpopulation of frog taste receptor cells.
    Bobkov YV; Kolesnikov SS
    Neurosci Lett; 1999 Apr; 264(1-3):25-8. PubMed ID: 10320005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic mechanism of generation of receptor potential in response to quinine in frog taste cell.
    Okada Y; Miyamoto T; Sato T
    Brain Res; 1988 May; 450(1-2):295-302. PubMed ID: 3261192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The taste transduction channel TRPM5 is a locus for bitter-sweet taste interactions.
    Talavera K; Yasumatsu K; Yoshida R; Margolskee RF; Voets T; Ninomiya Y; Nilius B
    FASEB J; 2008 May; 22(5):1343-55. PubMed ID: 18070821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Block of ATP-regulated and Ca2(+)-activated K+ channels in mouse pancreatic beta-cells by external tetraethylammonium and quinine.
    Bokvist K; Rorsman P; Smith PA
    J Physiol; 1990 Apr; 423():327-42. PubMed ID: 2201761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of proton transporter to acid-induced receptor potential in frog taste cells.
    Okada Y; Miyamoto T; Sato T
    Comp Biochem Physiol Comp Physiol; 1993 Aug; 105(4):725-8. PubMed ID: 7689435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Receptor potential of the frog taste cell in response to bitter stimuli.
    Sato T; Okada Y; Miyamoto T
    Physiol Behav; 1994 Dec; 56(6):1133-9. PubMed ID: 7878082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of quinine solutions on intracellular Ca2+ levels in neuro-2a cells--conventional physiological method for the evaluation of bitterness.
    Nakamura T; Akiyoshi T; Tanaka N; Shinozuka K; Matzno S; Nakabayashi T; Matsuyama K; Kashiwayanagi M; Uchida T
    Biol Pharm Bull; 2003 Nov; 26(11):1637-40. PubMed ID: 14600419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-dependent ionic currents in taste receptor cells of the larval tiger salamander.
    Sugimoto K; Teeter JH
    J Gen Physiol; 1990 Oct; 96(4):809-34. PubMed ID: 1701829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionic basis of resting membrane potential in frog taste cells.
    Sato T; Sugimoto K; Okada Y; Miyamoto T
    Jpn J Physiol; 1984; 34(6):973-83. PubMed ID: 6336048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saccharin activates cation conductance via inositol 1,4,5-trisphosphate production in a subset of isolated rod taste cells in the frog.
    Okada Y; Fujiyama R; Miyamoto T; Sato T
    Eur J Neurosci; 2001 Jan; 13(2):308-14. PubMed ID: 11168535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cyclic-nucleotide-suppressible conductance activated by transducin in taste cells.
    Kolesnikov SS; Margolskee RF
    Nature; 1995 Jul; 376(6535):85-8. PubMed ID: 7541117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+ release and activation of K+ and Cl- currents by extracellular ATP in distal nephron epithelial cells.
    Nilius B; Sehrer J; Heinke S; Droogmans G
    Am J Physiol; 1995 Aug; 269(2 Pt 1):C376-84. PubMed ID: 7544529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.