BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 11209038)

  • 21. Anion channels in Plasmodium-falciparum-infected erythrocytes and protein kinase A.
    Merckx A; Bouyer G; Thomas SL; Langsley G; Egée S
    Trends Parasitol; 2009 Mar; 25(3):139-44. PubMed ID: 19200784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of the Maurer's clefts in protein transport in Plasmodium falciparum.
    Sam-Yellowe TY
    Trends Parasitol; 2009 Jun; 25(6):277-84. PubMed ID: 19442584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of events preceding the release of malaria parasite from the host red blood cell.
    Soni S; Dhawan S; Rosen KM; Chafel M; Chishti AH; Hanspal M
    Blood Cells Mol Dis; 2005; 35(2):201-11. PubMed ID: 16087367
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring the flap pocket of the antimalarial target plasmepsin II: the "55 % rule" applied to enzymes.
    Zürcher M; Gottschalk T; Meyer S; Bur D; Diederich F
    ChemMedChem; 2008 Feb; 3(2):237-40. PubMed ID: 17918177
    [No Abstract]   [Full Text] [Related]  

  • 25. The plasmodial surface anion channel is functionally conserved in divergent malaria parasites.
    Lisk G; Desai SA
    Eukaryot Cell; 2005 Dec; 4(12):2153-9. PubMed ID: 16339732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional genomics, new tools in malaria research.
    Di Girolamo F; Raggi C; Bultrini E; Lanfrancotti A; Silvestrini F; Sargiacomo M; Birago C; Pizzi E; Alano P; Ponzi M
    Ann Ist Super Sanita; 2005; 41(4):469-77. PubMed ID: 16569915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3-D analysis of the Plasmodium falciparum Maurer's clefts using different electron tomographic approaches.
    Henrich P; Kilian N; Lanzer M; Cyrklaff M
    Biotechnol J; 2009 Jun; 4(6):888-94. PubMed ID: 19492330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of sodium artesunate on malaria infected human erythrocytes.
    Pan HZ; Lin FB; Zhang ZA
    Proc Chin Acad Med Sci Peking Union Med Coll; 1989; 4(4):181-5. PubMed ID: 2698476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmodium falciparum-induced channels.
    Staines HM; Powell T; Thomas SL; Ellory JC
    Int J Parasitol; 2004 May; 34(6):665-73. PubMed ID: 15111088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Febrile temperatures induce cytoadherence of ring-stage Plasmodium falciparum-infected erythrocytes.
    Udomsangpetch R; Pipitaporn B; Silamut K; Pinches R; Kyes S; Looareesuwan S; Newbold C; White NJ
    Proc Natl Acad Sci U S A; 2002 Sep; 99(18):11825-9. PubMed ID: 12177447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design.
    Rodriguez LE; Curtidor H; Urquiza M; Cifuentes G; Reyes C; Patarroyo ME
    Chem Rev; 2008 Sep; 108(9):3656-705. PubMed ID: 18710292
    [No Abstract]   [Full Text] [Related]  

  • 32. Involvement of malarial proteases in the interaction between the parasite and host erythrocyte in Plasmodium knowlesi infections.
    Banyal HS; Misra GC; Gupta CM; Dutta GP
    J Parasitol; 1981 Oct; 67(5):623-6. PubMed ID: 7028937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Actin is required for endocytic trafficking in the malaria parasite Plasmodium falciparum.
    Smythe WA; Joiner KA; Hoppe HC
    Cell Microbiol; 2008 Feb; 10(2):452-64. PubMed ID: 17944961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A 3D view of the host cell compartment in P. falciparum-infected erythrocytes.
    Tilley L; Hanssen E
    Transfus Clin Biol; 2008; 15(1-2):72-81. PubMed ID: 18501653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Plasmodium falciparum Maurer's clefts in 3D.
    Frischknecht F; Lanzer M
    Mol Microbiol; 2008 Feb; 67(4):687-91. PubMed ID: 18179419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multimodal analysis of Plasmodium knowlesi-infected erythrocytes reveals large invaginations, swelling of the host cell, and rheological defects.
    Liu B; Blanch AJ; Namvar A; Carmo O; Tiash S; Andrew D; Hanssen E; Rajagopal V; Dixon MWA; Tilley L
    Cell Microbiol; 2019 May; 21(5):e13005. PubMed ID: 30634201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron microscopy of knobs in Plasmodium falciparum-infected erythrocytes.
    Aikawa M; Rabbege JR; Udeinya I; Miller LH
    J Parasitol; 1983 Apr; 69(2):435-7. PubMed ID: 6343577
    [No Abstract]   [Full Text] [Related]  

  • 38. A role of falcipain-2, principal cysteine proteases of Plasmodium falciparum in merozoite egression.
    Dasaradhi PV; Mohmmed A; Kumar A; Hossain MJ; Bhatnagar RK; Chauhan VS; Malhotra P
    Biochem Biophys Res Commun; 2005 Nov; 336(4):1062-8. PubMed ID: 16165088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polyphosphate content and fine structure of acidocalcisomes of Plasmodium falciparum.
    Ruiz FA; Luo S; Moreno SN; Docampo R
    Microsc Microanal; 2004 Oct; 10(5):563-7. PubMed ID: 15525430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites.
    Gilson PR; Crabb BS
    Int J Parasitol; 2009 Jan; 39(1):91-6. PubMed ID: 18952091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.