These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 11209043)

  • 21. Role of O2 in regulation of lactate dynamics during hypoxia: mathematical model and analysis.
    Cabrera ME; Saidel GM; Kalhan SC
    Ann Biomed Eng; 1998; 26(1):1-27. PubMed ID: 10355547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Muscle oxygen uptake and energy turnover during dynamic exercise at different contraction frequencies in humans.
    Ferguson RA; Ball D; Krustrup P; Aagaard P; Kjaer M; Sargeant AJ; Hellsten Y; Bangsbo J
    J Physiol; 2001 Oct; 536(Pt 1):261-71. PubMed ID: 11579174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Myostatin is a key mediator between energy metabolism and endurance capacity of skeletal muscle.
    Mouisel E; Relizani K; Mille-Hamard L; Denis R; Hourdé C; Agbulut O; Patel K; Arandel L; Morales-Gonzalez S; Vignaud A; Garcia L; Ferry A; Luquet S; Billat V; Ventura-Clapier R; Schuelke M; Amthor H
    Am J Physiol Regul Integr Comp Physiol; 2014 Aug; 307(4):R444-54. PubMed ID: 24965795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.
    Li Y; Dash RK; Kim J; Saidel GM; Cabrera ME
    Am J Physiol Cell Physiol; 2009 Jan; 296(1):C25-46. PubMed ID: 18829894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies.
    Zhou L; Stanley WC; Saidel GM; Yu X; Cabrera ME
    J Physiol; 2005 Dec; 569(Pt 3):925-37. PubMed ID: 16223766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lactic acid accumulation is an advantage/disadvantage during muscle activity.
    Lindinger MI
    J Appl Physiol (1985); 2006 Jun; 100(6):2100. PubMed ID: 16714418
    [No Abstract]   [Full Text] [Related]  

  • 27. Lactic acid accumulation is an advantage/disadvantage during muscle activity.
    Gladden LB; Hogan MC
    J Appl Physiol (1985); 2006 Jun; 100(6):2100-1. PubMed ID: 16767812
    [No Abstract]   [Full Text] [Related]  

  • 28. The distribution of rest periods affects performance and adaptations of energy metabolism induced by high-intensity training in human muscle.
    Parra J; Cadefau JA; Rodas G; Amigó N; Cussó R
    Acta Physiol Scand; 2000 Jun; 169(2):157-65. PubMed ID: 10848646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lactic acid accumulation is an advantage/disadvantage during muscle activity.
    Vissing J
    J Appl Physiol (1985); 2006 Jun; 100(6):2101. PubMed ID: 16767813
    [No Abstract]   [Full Text] [Related]  

  • 30. Inosine monophosphate accumulation in energy-deficient human skeletal muscle with reference to substrate availability, fibre types and AMP deaminase activity.
    Norman B
    Scand J Clin Lab Invest; 1995 Dec; 55(8):733-41. PubMed ID: 8903844
    [No Abstract]   [Full Text] [Related]  

  • 31. Lactic acid accumulation is an advantage/disadvantage during muscle activity.
    Tupling R
    J Appl Physiol (1985); 2006 Jun; 100(6):2101-2. PubMed ID: 16767814
    [No Abstract]   [Full Text] [Related]  

  • 32. Performance Enhancement: What Are the Physiological Limits?
    Lundby C; Robach P
    Physiology (Bethesda); 2015 Jul; 30(4):282-92. PubMed ID: 26136542
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lactate: a major and crucial player in normal function of both muscle and brain.
    Schurr A
    J Physiol; 2008 Jun; 586(11):2665-6. PubMed ID: 18515304
    [No Abstract]   [Full Text] [Related]  

  • 34. VO2max and lactate production are not normal in all patients with chronic fatigue.
    Jones NL; Heigenhauser GJ
    Med Sci Sports Exerc; 2002 Jul; 34(7):1215; author reply 1215-6. PubMed ID: 12131266
    [No Abstract]   [Full Text] [Related]  

  • 35. What governs skeletal muscle VO2max? New evidence.
    Richardson RS
    Med Sci Sports Exerc; 2000 Jan; 32(1):100-7. PubMed ID: 10647536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Blood lactate accumulation decreases during the slow component of oxygen uptake without a decrease in muscular efficiency.
    O'Connell JM; Weir JM; MacIntosh BR
    Pflugers Arch; 2017 Oct; 469(10):1257-1265. PubMed ID: 28550471
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The "glycogen shunt" in exercising muscle: A role for glycogen in muscle energetics and fatigue.
    Shulman RG; Rothman DL
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):457-61. PubMed ID: 11209049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Critical velocity and maximal lactate steady state: better determinants of 2-hour marathon.
    Ade CJ; Broxterman RM; Barstow TJ
    J Appl Physiol (1985); 2011 Jan; 110(1):287-8; discussion 294. PubMed ID: 21542169
    [No Abstract]   [Full Text] [Related]  

  • 39. The Respiratory Compensation Point and the Deoxygenation Break Point Are Valid Surrogates for Critical Power and Maximum Lactate Steady State.
    Keir DA; Pogliaghi S; Murias JM
    Med Sci Sports Exerc; 2018 Nov; 50(11):2375-2378. PubMed ID: 30134366
    [No Abstract]   [Full Text] [Related]  

  • 40. The Respiratory Compensation Point and the Deoxygenation Break Point Are Not Valid Surrogates for Critical Power and Maximum Lactate Steady State.
    Broxterman RM; Craig JC; Richardson RS
    Med Sci Sports Exerc; 2018 Nov; 50(11):2379-2382. PubMed ID: 29975303
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.