BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 11211125)

  • 1. KCNE1 reverses the response of the human K+ channel KCNQ1 to cytosolic pH changes and alters its pharmacology and sensitivity to temperature.
    Unsöld B; Kerst G; Brousos H; Hübner M; Schreiber R; Nitschke R; Greger R; Bleich M
    Pflugers Arch; 2000 Dec; 441(2-3):368-78. PubMed ID: 11211125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The oxidant thimerosal modulates gating behavior of KCNQ1 by interaction with the channel outer shell.
    Kerst G; Brousos H; Schreiber R; Nitschke R; Hug MJ; Greger R; Bleich M
    J Membr Biol; 2002 Mar; 186(2):89-100. PubMed ID: 11944086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of I(Ks) biophysical properties on the expression system.
    Seebohm G; Lerche C; Busch AE; Bachmann A
    Pflugers Arch; 2001 Sep; 442(6):891-5. PubMed ID: 11680622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of homomeric and heteromeric KCNQ1 channels by external acidification.
    Peretz A; Schottelndreier H; Aharon-Shamgar LB; Attali B
    J Physiol; 2002 Dec; 545(3):751-66. PubMed ID: 12482884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties and function of KCNQ1 K+ channels isolated from the rectal gland of Squalus acanthias.
    Kerst G; Beschorner U; Unsöld B; von Hahn T; Schreiber R; Greger R; Gerlach U; Lang HJ; Kunzelmann K; Bleich M
    Pflugers Arch; 2001 Oct; 443(1):146-54. PubMed ID: 11692278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The
    Wang Y; Eldstrom J; Fedida D
    Mol Pharmacol; 2020 Feb; 97(2):132-144. PubMed ID: 31722973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TEA(+)-sensitive KCNQ1 constructs reveal pore-independent access to KCNE1 in assembled I(Ks) channels.
    Kurokawa J; Motoike HK; Kass RS
    J Gen Physiol; 2001 Jan; 117(1):43-52. PubMed ID: 11134230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gating and flickery block differentially affected by rubidium in homomeric KCNQ1 and heteromeric KCNQ1/KCNE1 potassium channels.
    Pusch M; Bertorello L; Conti F
    Biophys J; 2000 Jan; 78(1):211-26. PubMed ID: 10620287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation and properties of KCNQ1 (K(V)LQT1) and impact of the cystic fibrosis transmembrane conductance regulator.
    Boucherot A; Schreiber R; Kunzelmann K
    J Membr Biol; 2001 Jul; 182(1):39-47. PubMed ID: 11426298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Channel Assembly (KCNQ1 or KCNQ1 + KCNE1) on the Response of Zebrafish IKs Current to IKs Inhibitors and Activators.
    Haverinen J; Hassinen M; Vornanen M
    J Cardiovasc Pharmacol; 2022 May; 79(5):670-677. PubMed ID: 35377576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two open states and rate-limiting gating steps revealed by intracellular Na+ block of human KCNQ1 and KCNQ1/KCNE1 K+ channels.
    Pusch M; Ferrera L; Friedrich T
    J Physiol; 2001 May; 533(Pt 1):135-43. PubMed ID: 11351022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-channel characteristics of wild-type IKs channels and channels formed with two minK mutants that cause long QT syndrome.
    Sesti F; Goldstein SA
    J Gen Physiol; 1998 Dec; 112(6):651-63. PubMed ID: 9834138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rb+ efflux through functional activation of cardiac KCNQ1/minK channels by the benzodiazepine R-L3 (L-364,373).
    Jow F; Tseng E; Maddox T; Shen R; Kowal D; Dunlop J; Mekonnen B; Wang K
    Assay Drug Dev Technol; 2006 Aug; 4(4):443-50. PubMed ID: 16945016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tight coupling of rubidium conductance and inactivation in human KCNQ1 potassium channels.
    Seebohm G; Sanguinetti MC; Pusch M
    J Physiol; 2003 Oct; 552(Pt 2):369-78. PubMed ID: 14561821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatidylinositol-4,5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K+ channels.
    Loussouarn G; Park KH; Bellocq C; Baró I; Charpentier F; Escande D
    EMBO J; 2003 Oct; 22(20):5412-21. PubMed ID: 14532114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KCNE5 induces time- and voltage-dependent modulation of the KCNQ1 current.
    Angelo K; Jespersen T; Grunnet M; Nielsen MS; Klaerke DA; Olesen SP
    Biophys J; 2002 Oct; 83(4):1997-2006. PubMed ID: 12324418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional expression of two KvLQT1-related potassium channels responsible for an inherited idiopathic epilepsy.
    Yang WP; Levesque PC; Little WA; Conder ML; Ramakrishnan P; Neubauer MG; Blanar MA
    J Biol Chem; 1998 Jul; 273(31):19419-23. PubMed ID: 9677360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels.
    Yu H; Lin Z; Mattmann ME; Zou B; Terrenoire C; Zhang H; Wu M; McManus OB; Kass RS; Lindsley CW; Hopkins CR; Li M
    Proc Natl Acad Sci U S A; 2013 May; 110(21):8732-7. PubMed ID: 23650380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MinK-KvLQT1 fusion proteins, evidence for multiple stoichiometries of the assembled IsK channel.
    Wang W; Xia J; Kass RS
    J Biol Chem; 1998 Dec; 273(51):34069-74. PubMed ID: 9852064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural determinants of KvLQT1 control by the KCNE family of proteins.
    Melman YF; Domènech A; de la Luna S; McDonald TV
    J Biol Chem; 2001 Mar; 276(9):6439-44. PubMed ID: 11104781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.