These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 11211823)

  • 1. [The construction and physical-mechanical characterization of polymer foams of D. L-PLA].
    Wang C; Wang Q; Mao T; Wang H; Zhu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Dec; 17(4):396-9. PubMed ID: 11211823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laminated three-dimensional biodegradable foams for use in tissue engineering.
    Mikos AG; Sarakinos G; Leite SM; Vacanti JP; Langer R
    Biomaterials; 1993 Apr; 14(5):323-30. PubMed ID: 8507774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications.
    Wang X; Li W; Kumar V
    Biomaterials; 2006 Mar; 27(9):1924-9. PubMed ID: 16219346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [In vitro study of the properties of bioresorbable lactic acid polymer materials].
    Merloz P; Minfelde R; Schelp C; Lavaste F; Huet-Olivier J; Faure C; Butel J
    Rev Chir Orthop Reparatrice Appar Mot; 1995; 81(5):433-44. PubMed ID: 8560013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of new processing techniques in tissue engineering.
    Lu L; Mikos AG
    MRS Bull; 1996 Nov; 21(11):28-32. PubMed ID: 11541498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroporous polymer foams by hydrocarbon templating.
    Shastri VP; Martin I; Langer R
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):1970-5. PubMed ID: 10696111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of formulation variables on the morphology of biodegradable microparticles prepared by spray drying.
    Clarke N; O'Connor K; Ramtoola Z
    Drug Dev Ind Pharm; 1998 Feb; 24(2):169-74. PubMed ID: 15605447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications.
    Hutmacher D; Hürzeler MB; Schliephake H
    Int J Oral Maxillofac Implants; 1996; 11(5):667-78. PubMed ID: 8908867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound-assisted permeability improvement and acoustic characterization for solid-state fabricated PLA foams.
    Guo G; Ma Q; Zhao B; Zhang D
    Ultrason Sonochem; 2013 Jan; 20(1):137-43. PubMed ID: 22742903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study on preparation and property of PLA/liquid crystal composite membranes].
    Ding S; Li L; Deng Z; Zhou C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Sep; 19(3):383-5. PubMed ID: 12557502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A study on cytocompatibility of poly (lactic acid) membrane modified by polymer microspheres with different surface charges].
    Chen D; Ji J; Shen J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Oct; 22(5):966-70. PubMed ID: 16294732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological study of biodegradable PEO/PLA block copolymers.
    Younes H; Cohn D
    J Biomed Mater Res; 1987 Nov; 21(11):1301-16. PubMed ID: 3680315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A "room-temperature" injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds.
    Wu L; Jing D; Ding J
    Biomaterials; 2006 Jan; 27(2):185-91. PubMed ID: 16098580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions.
    Tom JW; Debenedetti PG
    Biotechnol Prog; 1991; 7(5):403-11. PubMed ID: 1369363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network.
    Ma PX; Choi JW
    Tissue Eng; 2001 Feb; 7(1):23-33. PubMed ID: 11224921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds.
    Goldstein AS; Zhu G; Morris GE; Meszlenyi RK; Mikos AG
    Tissue Eng; 1999 Oct; 5(5):421-34. PubMed ID: 10586098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo analysis of macroporous biodegradable poly(D,L-lactide-co-glycolide) scaffolds containing bioactive glass.
    Day RM; Maquet V; Boccaccini AR; Jérôme R; Forbes A
    J Biomed Mater Res A; 2005 Dec; 75(4):778-87. PubMed ID: 16082717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Preparation of aerosol of biodegradable multi-function film and investigation of its properties].
    Yang B; Yin Z; Chen G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Jun; 23(3):645-7. PubMed ID: 16856407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structured drug-loaded bioresorbable films for support structures.
    Zilberman M; Schwade ND; Meidell RS; Eberhart RC
    J Biomater Sci Polym Ed; 2001; 12(8):875-92. PubMed ID: 11718482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable barriers and guided tissue regeneration.
    Greenstein G; Caton JG
    Periodontol 2000; 1993 Feb; 1(1):36-45. PubMed ID: 8401859
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.