BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 11211832)

  • 1. [Study on statistical method of distribution for erythrocyte morphological features by computerized image processing].
    Hao B; Luo J; Yin G; Zheng C; Zheng Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Dec; 17(4):429-32, 443. PubMed ID: 11211832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis on the erythrocyte shape changes using wavelet transforms.
    Kavitha A; Ramakrishnan S
    Clin Hemorheol Microcirc; 2005; 33(4):327-35. PubMed ID: 16317242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythrocyte morphology automated analysis: proposal for a new prediction tool of essential hypertension diagnosis.
    Teodori L; Accorsi A; Uguccioni F; Rocchi MB; Baldoni F; Piatti E; Albertini MC
    Cytometry B Clin Cytom; 2007 May; 72(3):211-4. PubMed ID: 17266148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic mathematical morphology in polar-logarithmic representation.
    Luengo-Oroz MA; Angulo J
    IEEE Trans Image Process; 2009 May; 18(5):1090-6. PubMed ID: 19336306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated analysis of morphometric parameters for accurate definition of erythrocyte cell shape.
    Albertini MC; Teodori L; Piatti E; Piacentini MP; Accorsi A; Rocchi MB
    Cytometry A; 2003 Mar; 52(1):12-8. PubMed ID: 12596247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of red blood cells as normal, sickle, or other abnormal, using a single image analysis feature.
    Wheeless LL; Robinson RD; Lapets OP; Cox C; Rubio A; Weintraub M; Benjamin LJ
    Cytometry; 1994 Oct; 17(2):159-66. PubMed ID: 7835166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alkaline hemolysis fragility is dependent on cell shape: results from a morphology tracker.
    Ionescu-Zanetti C; Wang LP; Di Carlo D; Hung P; Di Blas A; Hughey R; Lee LP
    Cytometry A; 2005 Jun; 65(2):116-23. PubMed ID: 15849725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Random subwindows and extremely randomized trees for image classification in cell biology.
    Marée R; Geurts P; Wehenkel L
    BMC Cell Biol; 2007 Jul; 8 Suppl 1(Suppl 1):S2. PubMed ID: 17634092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic image analysis techniques for the morphological characterization of pharmaceutical particles: influence of the software, and the factor algorithms used in the shape factor estimation.
    Almeida-Prieto S; Blanco-Méndez J; Otero-Espinar FJ
    Eur J Pharm Biopharm; 2007 Nov; 67(3):766-76. PubMed ID: 17499492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformation-based nuclear morphometry: capturing nuclear shape variation in HeLa cells.
    Rohde GK; Ribeiro AJ; Dahl KN; Murphy RF
    Cytometry A; 2008 Apr; 73(4):341-50. PubMed ID: 18163487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontology-based lymphocyte population description using mathematical morphology on colour blood images.
    Angulo J; Klossa J; Flandrin G
    Cell Mol Biol (Noisy-le-grand); 2007 Jan; 52(6):2-15. PubMed ID: 17543204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Transformations of erythrocytes shape and its regulation].
    Stasiuk M; Kijanka G; Kozubek A
    Postepy Biochem; 2009; 55(4):425-33. PubMed ID: 20201356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythrocyte shape classification using integral-geometry-based methods.
    Gual-Arnau X; Herold-García S; Simó A
    Med Biol Eng Comput; 2015 Jul; 53(7):623-33. PubMed ID: 25773368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological image processing techniques in thermographic imaging.
    Schulze MA; Pearce JA
    Biomed Sci Instrum; 1993; 29():227-34. PubMed ID: 8329594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [An automatic fluorescence chemosensitivity analysis system for tumors].
    Su B; Chen H
    Zhongguo Yi Liao Qi Xie Za Zhi; 2005 May; 29(3):167-9. PubMed ID: 16124619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative microscopy approach for shape-based erythrocytes characterization in anaemia.
    Das DK; Chakraborty C; Mitra B; Maiti AK; Ray AK
    J Microsc; 2013 Feb; 249(2):136-49. PubMed ID: 23252834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative morphometrical characterization of human pronuclear zygotes.
    Beuchat A; Thévenaz P; Unser M; Ebner T; Senn A; Urner F; Germond M; Sorzano CO
    Hum Reprod; 2008 Sep; 23(9):1983-92. PubMed ID: 18540007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study of color blood image segmentation based on two-stage-improved FCM algorithm].
    Wang B; Chen H; Huang H; Rao J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr; 23(2):282-6. PubMed ID: 16706348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling interaction for segmentation of neighboring structures.
    Yan P; Kassim AA; Shen W; Shah M
    IEEE Trans Inf Technol Biomed; 2009 Mar; 13(2):252-62. PubMed ID: 19171526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic segmentation of diatom images for classification.
    Jalba AC; Wilkinson MH; Roerdink JB
    Microsc Res Tech; 2004 Sep; 65(1-2):72-85. PubMed ID: 15570583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.