These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 11211835)

  • 21. Mean scatterer spacing estimation using multi-taper coherence.
    Rubert N; Varghese T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jun; 60(6):1061-73. PubMed ID: 25004470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling ultrasound echoes in skin tissues using symmetric α-stable processes.
    Pereyra M; Batatia H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):60-72. PubMed ID: 22293736
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A simulation model for ultrasonic temperature imaging using change in backscattered energy.
    Trobaugh JW; Arthur RM; Straube WL; Moros EG
    Ultrasound Med Biol; 2008 Feb; 34(2):289-98. PubMed ID: 17935869
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of structural change in diffuse liver disease with frequency domain analysis of ultrasound.
    Suzuki K; Hayashi N; Sasaki Y; Kono M; Kasahara A; Imai Y; Fusamoto H; Kamada T
    Hepatology; 1993 Jun; 17(6):1041-6. PubMed ID: 8514252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study Frequency Shift Evaluation of Ultrasound in Fresh and Frozen-thawed Tissues of Cryosurgery by AR Model.
    Luo F; Tany Y; Sun H; Liu J; Sheng L
    Cryo Letters; 2020; 41(3):140-144. PubMed ID: 33988643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Signal-to-noise ratio enhancement based on wavelet filtering in ultrasonic testing.
    Matz V; Smid R; Starman S; Kreidl M
    Ultrasonics; 2009 Dec; 49(8):752-9. PubMed ID: 19570560
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrasound signal wavelet analysis to quantify the microstructures of normal and frozen tissues in vitro.
    Sheng L; Wang G; Li F; Luo J; Liu J
    Cryobiology; 2014 Feb; 68(1):29-34. PubMed ID: 24269529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure function for high-concentration biophantoms of polydisperse scatterer sizes.
    Han A; O'Brien W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Feb; 62(2):303-18. PubMed ID: 25643080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrasonic backscattering from human tissue: a realistic model.
    Gore JC; Leeman S
    Phys Med Biol; 1977 Mar; 22(2):317-26. PubMed ID: 857266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Broadband ultrasonic backscattering applied to nondestructive characterization of materials.
    Kruger SE; Rebello JM; Charlier J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jul; 51(7):832-8. PubMed ID: 15301002
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of the discriminant Fourier-derived cepstrum with feature-level post-processing for surface electromyographic signal classification.
    Chen X; Zhu X; Zhang D
    Physiol Meas; 2009 Dec; 30(12):1399-413. PubMed ID: 19887720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative Ultrasound: Scattering Theory.
    Oelze M
    Adv Exp Med Biol; 2023; 1403():19-28. PubMed ID: 37495912
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tissue structure study through ultrasonic forward scattering.
    Edee MK
    Ultrasonics; 2000 May; 37(9):645-56. PubMed ID: 10857579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of ultrasonic echo envelope based on Nakagami-inverse Gaussian distribution.
    Karmeshu ; Agrawal R
    Ultrasound Med Biol; 2006 Mar; 32(3):371-6. PubMed ID: 16530095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrasonic characterization of abdominal tissues via digital analysis of backscattered waveforms.
    Sommer FG; Joynt LF; Carroll BA; Macovski A
    Radiology; 1981 Dec; 141(3):811-7. PubMed ID: 7302239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3-D in vitro estimation of temperature using the change in backscattered ultrasonic energy.
    Arthur RM; Basu D; Guo Y; Trobaugh JW; Moros EG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1724-33. PubMed ID: 20679004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prospects for ultrasonic spectroscopy and spectral imaging of abdominal tissues.
    Sommer FG; Stetson P; Chen HS; Stern RA; Rachlin DJ; Macovski A
    J Ultrasound Med; 1993 Feb; 12(2):83-90. PubMed ID: 8468741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of splenic structure in Hodgkin disease by using narrow-band filtration of backscattered ultrasound.
    Friedman PA; Sommer FG; Chen HS; Rachlin DJ; Hoppe R
    AJR Am J Roentgenol; 1989 Jun; 152(6):1197-203. PubMed ID: 2655388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measuring mass density and ultrasonic wave velocity: A wavelet-based method applied in ultrasonic reflection mode.
    Metwally K; Lefevre E; Baron C; Zheng R; Pithioux M; Lasaygues P
    Ultrasonics; 2016 Feb; 65():10-7. PubMed ID: 26403278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reversible back-propagation imaging algorithm for postprocessing of ultrasonic array data.
    Velichko A; Wilcox PD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2492-503. PubMed ID: 19942535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.