These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
28. New antibiotic discovery, novel screens, novel targets and impact of microbial genomics. Allsop AE Curr Opin Microbiol; 1998 Oct; 1(5):530-4. PubMed ID: 10066524 [TBL] [Abstract][Full Text] [Related]
29. [Role of drug efflux pumps in bacterial multidrug resistance and virulence. Analysis to identify novel drug targets and counteract multidrug resistance and virulence]. Nishino K Jpn J Antibiot; 2008 Apr; 61(2):105-13. PubMed ID: 18669419 [No Abstract] [Full Text] [Related]
30. Current Advances in the Identification and Characterization of Putative Drug and Vaccine Targets in the Bacterial Genomes. Shahbaaz M; Bisetty K; Ahmad F; Hassan MI Curr Top Med Chem; 2016; 16(9):1040-69. PubMed ID: 26303422 [TBL] [Abstract][Full Text] [Related]
31. Using the genome to understand pathogenicity. Field D; Hughes J; Moxon ER Methods Mol Biol; 2004; 266():261-87. PubMed ID: 15148423 [TBL] [Abstract][Full Text] [Related]
32. Bacterial genome engineering and synthetic biology: combating pathogens. Krishnamurthy M; Moore RT; Rajamani S; Panchal RG BMC Microbiol; 2016 Nov; 16(1):258. PubMed ID: 27814687 [TBL] [Abstract][Full Text] [Related]
33. Genomic Pipeline for Analysis of Mutational Events in Bacteria. Lemée P; Charron R; Bridier A Methods Mol Biol; 2025; 2852():211-222. PubMed ID: 39235747 [TBL] [Abstract][Full Text] [Related]
34. Identification and characterization of pathogenicity and other genomic islands using base composition analyses. Guy L Future Microbiol; 2006 Oct; 1(3):309-16. PubMed ID: 17661643 [TBL] [Abstract][Full Text] [Related]
35. Completely sequenced genomes of pathogenic bacteria: a review. Guzmán E; Romeu A; Garcia-Vallve S Enferm Infecc Microbiol Clin; 2008 Feb; 26(2):88-98. PubMed ID: 18341921 [TBL] [Abstract][Full Text] [Related]
36. The decline of antibiotic era--new approaches for antibacterial drug discovery. Jagusztyn-Krynicka EK; Wyszyńska A Pol J Microbiol; 2008; 57(2):91-8. PubMed ID: 18646395 [TBL] [Abstract][Full Text] [Related]
37. Overview of bioinformatic methods for analysis of antibiotic resistome from genome and metagenome data. Lee K; Kim DW; Cha CJ J Microbiol; 2021 Mar; 59(3):270-280. PubMed ID: 33624264 [TBL] [Abstract][Full Text] [Related]
38. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Wattam AR; Davis JJ; Assaf R; Boisvert S; Brettin T; Bun C; Conrad N; Dietrich EM; Disz T; Gabbard JL; Gerdes S; Henry CS; Kenyon RW; Machi D; Mao C; Nordberg EK; Olsen GJ; Murphy-Olson DE; Olson R; Overbeek R; Parrello B; Pusch GD; Shukla M; Vonstein V; Warren A; Xia F; Yoo H; Stevens RL Nucleic Acids Res; 2017 Jan; 45(D1):D535-D542. PubMed ID: 27899627 [TBL] [Abstract][Full Text] [Related]
39. Double trouble: medical implications of genetic duplication and amplification in bacteria. Craven SH; Neidle EL Future Microbiol; 2007 Jun; 2(3):309-21. PubMed ID: 17661705 [TBL] [Abstract][Full Text] [Related]
40. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Feldgarden M; Brover V; Gonzalez-Escalona N; Frye JG; Haendiges J; Haft DH; Hoffmann M; Pettengill JB; Prasad AB; Tillman GE; Tyson GH; Klimke W Sci Rep; 2021 Jun; 11(1):12728. PubMed ID: 34135355 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]