BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 11212895)

  • 1. Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa.
    Gockel G; Hachtel W
    Protist; 2000 Dec; 151(4):347-51. PubMed ID: 11212895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genes for components of the chloroplast translational apparatus are conserved in the reduced 73-kb plastid DNA of the nonphotosynthetic euglenoid flagellate Astasia longa.
    Gockel G; Hachtel W; Baier S; Fliss C; Henke M
    Curr Genet; 1994 Sep; 26(3):256-62. PubMed ID: 7859309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and expression of a gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase (rbcL) in the colourless euglenoid flagellate Astasia longa.
    Siemeister G; Hachtel W
    Plant Mol Biol; 1990 May; 14(5):825-33. PubMed ID: 2102860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organization and nucleotide sequence of ribosomal RNA genes on a circular 73 kbp DNA from the colourless flagellate Astasia longa.
    Siemeister G; Hachtel W
    Curr Genet; 1990 May; 17(5):433-8. PubMed ID: 2113436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genes for the plastid elongation factor Tu and ribosomal protein S7 and six tRNA genes on the 73 kb DNA from Astasia longa that resembles the chloroplast DNA of Euglena.
    Siemeister G; Buchholz C; Hachtel W
    Mol Gen Genet; 1990 Feb; 220(3):425-32. PubMed ID: 2338940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genes for ribosomal proteins are retained on the 73 kb DNA from Astasia longa that resembles Euglena chloroplast DNA.
    Siemeister G; Buchholz C; Hachtel W
    Curr Genet; 1990 Dec; 18(5):457-64. PubMed ID: 2078869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis.
    Hadariová L; Vesteg M; Birčák E; Schwartzbach SD; Krajčovič J
    Curr Genet; 2017 May; 63(2):331-341. PubMed ID: 27553633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and comparative analysis of the chloroplast alpha-subunit gene of DNA-dependent RNA polymerase from seven Euglena species.
    Sheveleva EV; Giordani NV; Hallick RB
    Nucleic Acids Res; 2002 Mar; 30(5):1247-54. PubMed ID: 11861918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Cryptic Plastid of
    Füssy Z; Záhonová K; Tomčala A; Krajčovič J; Yurchenko V; Oborník M; Eliáš M
    mSphere; 2020 Oct; 5(5):. PubMed ID: 33087518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Organization of ribosomal DNA from the phytoflagellates Astasia longa and Euglena gracilis: comparison of the structure of 19S and 28S rRNA genes].
    Zaĭtseva GN; Oparina NIu; Kagramanova VV; Kleshchenko EV
    Mol Biol (Mosk); 1995; 29(3):546-52. PubMed ID: 8552059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastid ribosomal protein genes from the nonphotosynthetic flagellate Astasia longa.
    Gockel G; Baier S; Hachtel W
    Plant Physiol; 1994 Aug; 105(4):1443-4. PubMed ID: 7972503
    [No Abstract]   [Full Text] [Related]  

  • 12. Evolution of the chloroplast genome in photosynthetic euglenoids: a comparison of Eutreptia viridis and Euglena gracilis (Euglenophyta).
    Wiegert KE; Bennett MS; Triemer RE
    Protist; 2012 Nov; 163(6):832-43. PubMed ID: 22364772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts.
    Rogers MB; Gilson PR; Su V; McFadden GI; Keeling PJ
    Mol Biol Evol; 2007 Jan; 24(1):54-62. PubMed ID: 16990439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete sequence of Euglena gracilis chloroplast DNA.
    Hallick RB; Hong L; Drager RG; Favreau MR; Monfort A; Orsat B; Spielmann A; Stutz E
    Nucleic Acids Res; 1993 Jul; 21(15):3537-44. PubMed ID: 8346031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae.
    Douglas SE; Penny SL
    J Mol Evol; 1999 Feb; 48(2):236-44. PubMed ID: 9929392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for transitional stages in the evolution of euglenid group II introns and twintrons in the Monomorphina aenigmatica plastid genome.
    Pombert JF; James ER; Janouškovec J; Keeling PJ
    PLoS One; 2012; 7(12):e53433. PubMed ID: 23300929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From chloroplasts to "cryptic" plastids: evolution of plastid genomes in parasitic plants.
    Krause K
    Curr Genet; 2008 Sep; 54(3):111-21. PubMed ID: 18696071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triosephosphate isomerase genes in two trophic modes of euglenoids (euglenophyceae) and their phylogenetic analysis.
    Sun GL; Shen W; Wen JF
    J Eukaryot Microbiol; 2008; 55(3):170-7. PubMed ID: 18460154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plastid DNA from Pyrenomonas salina (Cryptophyceae): physical map, genes, and evolutionary implications.
    Maerz M; Wolters J; Hofmann CJ; Sitte P; Maier UG
    Curr Genet; 1992 Jan; 21(1):73-81. PubMed ID: 1735127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twintrons are not unique to the Euglena chloroplast genome: structure and evolution of a plastome cpn60 gene from a cryptomonad.
    Maier UG; Rensing SA; Igloi GL; Maerz M
    Mol Gen Genet; 1995 Jan; 246(1):128-31. PubMed ID: 7823908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.