BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 11212895)

  • 41. Organization of ribosomal protein genes rpl23, rpl2, rps19, rpl22 and rps3 on the Euglena gracilis chloroplast genome.
    Christopher DA; Cushman JC; Price CA; Hallick RB
    Curr Genet; 1988 Sep; 14(3):275-85. PubMed ID: 3143485
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Plastid gene expression during fruit ripening in tomato.
    Piechulla B; Imlay KR; Gruissem W
    Plant Mol Biol; 1985 Nov; 5(6):373-84. PubMed ID: 24306991
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of the 16S-23S internal transcribed spacer among 34 higher plants: suitability for interspecific plastid transformation.
    McNutt PM; Dehart MJ; Matej LA
    Plant Cell Rep; 2007 Jan; 26(1):47-60. PubMed ID: 16912867
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis.
    Záhonová K; Hadariová L; Vacula R; Yurchenko V; Eliáš M; Krajčovič J; Vesteg M
    FEBS Lett; 2014 Mar; 588(5):783-8. PubMed ID: 24492004
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor.
    Douglas SE; Turner S
    J Mol Evol; 1991 Sep; 33(3):267-73. PubMed ID: 1757997
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Accelerated evolution of functional plastid rRNA and elongation factor genes due to reduced protein synthetic load after the loss of photosynthesis in the chlorophyte alga Polytoma.
    Vernon D; Gutell RR; Cannone JJ; Rumpf RW; Birky CW
    Mol Biol Evol; 2001 Sep; 18(9):1810-22. PubMed ID: 11504860
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transcriptome analysis of the Euglena gracilis plastid chromosome.
    Geimer S; Belicová A; Legen J; Sláviková S; Herrmann RG; Krajcovic J
    Curr Genet; 2009 Aug; 55(4):425-38. PubMed ID: 19488756
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Divergent evolution of two plastid genes, rbcL and atpB, in a non-photosynthetic parasitic plant.
    Delavault P; Sakanyan V; Thalouarn P
    Plant Mol Biol; 1995 Dec; 29(5):1071-9. PubMed ID: 8555449
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Complex patterns of plastid 16S rRNA gene evolution in nonphotosynthetic green algae.
    Nedelcu AM
    J Mol Evol; 2001 Dec; 53(6):670-9. PubMed ID: 11677627
    [TBL] [Abstract][Full Text] [Related]  

  • 50. accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae.
    Hong CP; Park J; Lee Y; Lee M; Park SG; Uhm Y; Lee J; Kim CK
    BMC Genomics; 2017 Aug; 18(1):607. PubMed ID: 28800729
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The non-photosynthetic plastid in malarial parasites and other apicomplexans is derived from outside the green plastid lineage.
    Blanchard JL; Hicks JS
    J Eukaryot Microbiol; 1999; 46(4):367-75. PubMed ID: 10461383
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Twenty-fold difference in evolutionary rates between the mitochondrial and plastid genomes of species with secondary red plastids.
    Smith DR; Keeling PJ
    J Eukaryot Microbiol; 2012; 59(2):181-4. PubMed ID: 22236077
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure and organization of rhodophyte and chromophyte plastid genomes: implications for the ancestry of plastids.
    Shivji MS; Li N; Cattolico RA
    Mol Gen Genet; 1992 Mar; 232(1):65-73. PubMed ID: 1552904
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The gene for the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into Rubisco.
    Whitney SM; Andrews TJ
    Plant Cell; 2001 Jan; 13(1):193-205. PubMed ID: 11158539
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isolation of Euglena gracilis chloroplast 5S ribosomal RNA and mapping the 5S rRNA gene on chloroplast DNA.
    Gray PW; Hallick RB
    Biochemistry; 1979 May; 18(9):1820-5. PubMed ID: 107968
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A New Type of Circular RNA derived from Nonconventional Introns in Nuclear Genes of Euglenids.
    Gumińska N; Zakryś B; Milanowski R
    J Mol Biol; 2021 Feb; 433(3):166758. PubMed ID: 33316270
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A nucleomorph-encoded CbbX and the phylogeny of RuBisCo regulators.
    Maier UG; Fraunholz M; Zauner S; Penny S; Douglas S
    Mol Biol Evol; 2000 Apr; 17(4):576-83. PubMed ID: 10742049
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tracing patterns of chloroplast evolution in euglenoids: contributions from Colacium vesiculosum and Strombomonas acuminata (Euglenophyta).
    Wiegert KE; Bennett MS; Triemer RE
    J Eukaryot Microbiol; 2013; 60(2):214-21. PubMed ID: 23351081
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure.
    Marin B; Palm A; Klingberg M; Melkonian M
    Protist; 2003 Apr; 154(1):99-145. PubMed ID: 12812373
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The origin of chlorarachniophyte plastids, as inferred from phylogenetic comparisons of amino acid sequences of EF-Tu.
    Ishida K; Cao Y; Hasegawa M; Okada N; Hara Y
    J Mol Evol; 1997 Dec; 45(6):682-7. PubMed ID: 9419245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.