These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11213182)

  • 21. Soil sampling strategies for site assessments in petroleum-contaminated areas.
    Kim G; Chowdhury S; Lin YM; Lu CJ
    Environ Geochem Health; 2017 Apr; 39(2):293-305. PubMed ID: 27995353
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements.
    Baize D; Sterckeman T
    Sci Total Environ; 2001 Jan; 264(1-2):127-39. PubMed ID: 11213175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Critical evaluation of soil contamination assessment methods for trace metals.
    Desaules A
    Sci Total Environ; 2012 Jun; 426():120-31. PubMed ID: 22542230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of sample drying procedures on mercury concentrations analyzed in soils.
    Hojdová M; Rohovec J; Chrastný V; Penížek V; Navrátil T
    Bull Environ Contam Toxicol; 2015 May; 94(5):570-6. PubMed ID: 25786366
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Field sampling of soil pore water to evaluate trace element mobility and associated environmental risk.
    Moreno-Jiménez E; Beesley L; Lepp NW; Dickinson NM; Hartley W; Clemente R
    Environ Pollut; 2011 Oct; 159(10):3078-85. PubMed ID: 21570165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Distribution and migration of heavy metals in soil profiles by high-resolution sampling].
    Ruan XL; Zhang GL; Zhao YG; Yuan DG; Wu YJ
    Huan Jing Ke Xue; 2006 May; 27(5):1020-5. PubMed ID: 16850852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A review of regulatory decisions for environmental protection: part II - the case-study of contaminated land management in Portugal.
    Rodrigues SM; Pereira ME; da Silva EF; Hursthouse AS; Duarte AC
    Environ Int; 2009 Jan; 35(1):214-25. PubMed ID: 18835040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium.
    Senesi GS; Dell'Aglio M; Gaudiuso R; De Giacomo A; Zaccone C; De Pascale O; Miano TM; Capitelli M
    Environ Res; 2009 May; 109(4):413-20. PubMed ID: 19272593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methods of Soil Resampling to Monitor Changes in the Chemical Concentrations of Forest Soils.
    Lawrence GB; Fernandez IJ; Hazlett PW; Bailey SW; Ross DS; Villars TR; Quintana A; Ouimet R; McHale MR; Johnson CE; Briggs RD; Colter RA; Siemion J; Bartlett OL; Vargas O; Antidormi MR; Koppers MM
    J Vis Exp; 2016 Nov; (117):. PubMed ID: 27911419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new baseline of organic carbon stock in European agricultural soils using a modelling approach.
    Lugato E; Panagos P; Bampa F; Jones A; Montanarella L
    Glob Chang Biol; 2014 Jan; 20(1):313-26. PubMed ID: 23765562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment.
    Tóth G; Hermann T; Szatmári G; Pásztor L
    Sci Total Environ; 2016 Sep; 565():1054-1062. PubMed ID: 27261421
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The possibilities for the EU-wide use of similar ecological risk-based soil contamination assessment tools.
    Swartjes FA; Carlon C; de Wit NH
    Sci Total Environ; 2008 Dec; 406(3):523-9. PubMed ID: 18762322
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heavy metals in agricultural soils of the European Union with implications for food safety.
    Tóth G; Hermann T; Da Silva MR; Montanarella L
    Environ Int; 2016 Mar; 88():299-309. PubMed ID: 26851498
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Validated sampling strategy for assessing contaminants in soil stockpiles.
    Lamé F; Honders T; Derksen G; Gadella M
    Environ Pollut; 2005 Mar; 134(1):5-11. PubMed ID: 15572219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive assessment of seldom monitored trace elements pollution in the riparian soils of the Miyun Reservoir, China.
    Han L; Gao B; Zhou Y; Xu D; Gao L; Yu H; Wang S
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20772-20782. PubMed ID: 27475436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Application of inverse distance weighted interpolation method in contaminated site assessment].
    Yang WR; Wang RS; Huang JL; Chen Z; Li F
    Ying Yong Sheng Tai Xue Bao; 2007 Sep; 18(9):2013-8. PubMed ID: 18062305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sampling the soil in long-term forest plots: the implications of spatial variation.
    Kirwan N; Oliver MA; Moffat AJ; Morgan GW
    Environ Monit Assess; 2005 Dec; 111(1-3):149-72. PubMed ID: 16311827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comment on "Characterization of a reference site for quantifying uncertainties related to soil sampling" by S. Barbizzi et al (2004).
    Baveye P
    Environ Pollut; 2005 May; 135(2):341-2. PubMed ID: 15734594
    [No Abstract]   [Full Text] [Related]  

  • 39. Applying Incremental Sampling Methodology to Soils Containing Heterogeneously Distributed Metallic Residues to Improve Risk Analysis.
    Clausen JL; Georgian T; Gardner KH; Douglas TA
    Bull Environ Contam Toxicol; 2018 Jan; 100(1):155-161. PubMed ID: 29270645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applying no-depletion equilibrium sampling and full-depletion bioaccessibility extraction to 35 historically polycyclic aromatic hydrocarbon contaminated soils.
    Bartolomé N; Hilber I; Sosa D; Schulin R; Mayer P; Bucheli TD
    Chemosphere; 2018 May; 199():409-416. PubMed ID: 29453067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.