BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 11214735)

  • 21. Identification and total synthesis of a novel dimethylated fatty acid from the Caribbean sponge Calyx podatypa.
    Carballeira NM; Pagán M
    J Nat Prod; 2000 May; 63(5):666-9. PubMed ID: 10843583
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel di-, tri-, and tetraenoic fatty acids with bis-methylene-interrupted double-bond systems from the sponge Haliclona cinerea.
    Joh YG; Elenkov IJ; Stefanov KL; Popov SS; Dobson G; Christie WW
    Lipids; 1997 Jan; 32(1):13-7. PubMed ID: 9075188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fatty Acids from a Glass Sponge Aulosaccus sp. Occurrence of New Cyclopropane-Containing and Methyl-Branched Acids.
    Santalova EA; Denisenko VA
    Lipids; 2017 Jan; 52(1):73-82. PubMed ID: 27864794
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel fatty acid esters of (7E, 12E, 18R, 20Z)-variabilin from the marine sponge Ircinia felix.
    Martínez A; Duque C; Fujimoto Y
    Lipids; 1997 May; 32(5):565-9. PubMed ID: 9168464
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New natural 2-acetoxy fatty acids using chemical ionization and electron impact mass spectrometry.
    Ayanoglu E; Kurtz K; Kornprobst JM; Djerassi C
    Lipids; 1985 Mar; 20(3):141-4. PubMed ID: 3990522
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical composition of the sponge Hymeniacidon sanguinea from the Canary Islands.
    Nechev J; Christie WW; Robaina R; de Diego F; Popov S; Stefanov K
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Feb; 137(2):365-74. PubMed ID: 15123209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel Very Long-Chain α-Methoxylated Δ5,9 Fatty Acids from the Sponge Asteropus niger Are Effective Inhibitors of Topoisomerases IB.
    Carballeira NM; Montano N; Amador LA; Rodríguez AD; Golovko MY; Golovko SA; Reguera RM; Álvarez-Velilla R; Balaña-Fouce R
    Lipids; 2016 Feb; 51(2):245-56. PubMed ID: 26694606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative study of the fatty acid composition of sponges of the genus Ircinia. Identification of the new 23-methyl-5,9-tetracosadienoic acid.
    Carballeira NM; Shalabi F; Cruz C; Rodriguez J; Rodriguez E
    Comp Biochem Physiol B; 1991; 100(3):489-92. PubMed ID: 1814678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New unsaturated long-chain fatty acids in the phospholipids from the Axinellida sponges Trikentrion loeve and Pseudaxinella cf. lunaecharta.
    Barnathan G; Kornprobst JM; Doumenq P; Miralles J
    Lipids; 1996 Feb; 31(2):193-200. PubMed ID: 8835408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Straight and branched-chain fatty acids in preorbital glands of sika deer, Cervus nippon.
    Wood WF
    J Chem Ecol; 2004 Feb; 30(2):479-82. PubMed ID: 15112737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phospholipid fatty acids and sterols of two Cinachyrella sponges from the Saudi Arabian Red Sea: comparison with Cinachyrella species from other origins.
    Barnathan G; Genin E; Velosaotsy NE; Kornprobst JM; Al-Lihaibi S; Al-Sofyani A; Nongonierma R
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Jun; 135(2):297-308. PubMed ID: 12798940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of the new 23-methyl-5,9-pentacosadienoic acid in the sponge Cribrochalina vasculum.
    Carballeria NM; Reyes ED
    Lipids; 1990 Jan; 25(1):69-71. PubMed ID: 2325509
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fatty acid and aldehyde composition of major phospholipids in salt gland of marine birds and spiny dogfish.
    Bergh CH; Larson G; Sameulsson BE
    Lipids; 1975 May; 10(5):299-302. PubMed ID: 1128176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isoprenoid fatty acids from marine sponges. Are sponges selective?
    Carballeira NM; Maldonado L; Porras B
    Lipids; 1987 Oct; 22(10):767-9. PubMed ID: 3431350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Gas chromatographic method of determining the fatty acid composition of phospholipids].
    Pertsovskiĭ AL; Sugak LB; Tkacheva LL
    Lab Delo; 1982; (9):573-4. PubMed ID: 6183533
    [No Abstract]   [Full Text] [Related]  

  • 36. Identification of microorganisms by gas chromatographic-mass spectrometric analysis of cellular fatty acids.
    Moss CW; Dees SB
    J Chromatogr; 1975 Oct; 112():594-604. PubMed ID: 1184690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stimulus-response coupling in marine sponge cell aggregation: lipid metabolism and the function of exogenously added arachidonic and docosahexaenoic acids.
    Weissmann G; Riesen W; Davidson S; Waite M
    Biochim Biophys Acta; 1988 Jun; 960(3):351-64. PubMed ID: 2968121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of fatty acids as methyl esters and phospholipids in cheese samples after separation of triacylglycerides and phospholipids.
    Hauff S; Vetter W
    Anal Chim Acta; 2009 Mar; 636(2):229-35. PubMed ID: 19264173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of fatty acids of the bacteria Streptomyces R61 and Actinomadura R39 by capillary gas chromatography-mass spectrometry.
    Brown AS; Cho KY; Cheung HT; Hemmens V; Vine J
    J Chromatogr; 1985 May; 341(1):139-45. PubMed ID: 4019678
    [No Abstract]   [Full Text] [Related]  

  • 40. Novel brominated phospholipid fatty acids from the Caribbean sponge Agelas sp.
    Carballeira NM; Emiliano A
    Lipids; 1993 Aug; 28(8):763-6. PubMed ID: 8377592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.