These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 11214859)

  • 41. RCA I-binding patterns of the Golgi apparatus.
    Pavelka M; Ellinger A
    Eur J Cell Biol; 1986 Aug; 41(2):270-8. PubMed ID: 3758085
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thiamine pyrophosphatase activity in the Golgi apparatus of calcitonin-treated osteoclasts.
    Noda K; Nakamura Y; Wakimoto Y; Tanaka T; Kuwahara Y
    J Electron Microsc (Tokyo); 1991 Dec; 40(6):399-402. PubMed ID: 1806652
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Autophagy-related vacuoles in mouse gallbladder epithelium.
    Psenicnik M; Veranic P
    Folia Histochem Cytobiol; 2001; 39(1):3-8. PubMed ID: 11261546
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Blood-urine barrier formation in mouse urinary bladder development.
    Jezernik K; Pipan N
    Anat Rec; 1993 Apr; 235(4):533-8. PubMed ID: 8465986
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparation methods for light microscopic and ultrastructural studies of fetal rat bladder.
    Cano M; Johansson SL; Wilson RB; Ellwein LB; Sakata T; Cohen SM
    Scan Electron Microsc; 1986; (Pt 4):1357-62. PubMed ID: 3810015
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Apical plasma membrane traffic in superficial cells of bladder urothelium.
    Kreft ME; Jezernik K; Kreft M; Romih R
    Ann N Y Acad Sci; 2009 Jan; 1152():18-29. PubMed ID: 19161373
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of lamina propria on the growth and differentiation of urothelial cells in vitro.
    Erdani Kreft M; Sterle M
    Pflugers Arch; 2000; 440(5 Suppl):R181-2. PubMed ID: 11005663
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differentiation of epithelial cells in the urinary tract.
    Romih R; Korosec P; de Mello W; Jezernik K
    Cell Tissue Res; 2005 May; 320(2):259-68. PubMed ID: 15778856
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Further ultracytochemical analysis of rat adenohypophyseal cells: detection of two distinct enzyme activities within a single cell.
    Khokhlov SYe ; Nevorotin AJ
    J Cell Sci; 1985 Apr; 75():303-12. PubMed ID: 2413061
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultrastructural localization of nicotinamide adenine dinucleotide phosphatase (NADPase) activity in the exocrine pancreas of rat: identification of a novel structure.
    Beaudoin AR; Grondin G; Lord A
    Eur J Cell Biol; 1984 Mar; 33(2):275-80. PubMed ID: 6325193
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antigenic and ultrastructural markers associated with urothelial cytodifferentiation in primary explant outgrowths of mouse bladder.
    Kreft ME; Romih R; Sterle M
    Cell Biol Int; 2002; 26(1):63-74. PubMed ID: 11779222
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Spatial distribution of thiamine pyrophosphatase and arylsulfatase activities in the area of the Golgi apparatus of the adenohypophyseal secretory cells in the white rat].
    Nevorotin AI; Khokhlov SE
    Tsitologiia; 1983 Sep; 25(9):1073-6. PubMed ID: 6139898
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The localization of thiamine pyrophosphatase activity in Meckel's cartilage cells during endochondral ossification.
    Akisaka T
    Histochemistry; 1982; 76(4):539-46. PubMed ID: 6131878
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Subcellular distribution of acid NADPase activity within the parenchymal cells of rat liver.
    Smith CE; Paiement J; Bergeron JJ
    J Histochem Cytochem; 1986 May; 34(5):649-58. PubMed ID: 3009603
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Three-dimensional morphology of the Golgi apparatus in osteoclasts: NADPase and arylsulfatase cytochemistry, and scanning electron microscopy using osmium maceration.
    Yamamoto T; Hasegawa T; Hongo H; Amizuka N
    Microscopy (Oxf); 2019 Jun; 68(3):243-253. PubMed ID: 30860257
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The fine structure of the human fetal urinary bladder. Development and maturation. A light, transmission and scanning electron microscopic study.
    Newman J; Antonakopoulos GN
    J Anat; 1989 Oct; 166():135-50. PubMed ID: 2621133
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The distinct steps of cell detachment during development of mouse uroepithelial cells in the bladder.
    Jezernik K; Sterle M; Batista U
    Cell Biol Int; 1997 Jan; 21(1):1-6. PubMed ID: 9046102
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [A morphofunctional analysis of the changes in the Golgi apparatus in the epitheliocytes of the frog bladder under conditions of the vasopressin stimulation of water transport].
    Snigirevskaia ES; Komissarchik IaIu
    Tsitologiia; 1995; 37(12):1216-22. PubMed ID: 8714353
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mouse urothelial cells in early postnatal development--proliferation and apical plasma membrane specialization.
    Erman A; Jeyernik K
    Pflugers Arch; 2000; 440(5 Suppl):R183-4. PubMed ID: 11005664
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Temporal-spatial protein expression in bladder tissue derived from embryonic stem cells.
    Thomas JC; Oottamasathien S; Makari JH; Honea L; Sharif-Afshar AR; Wang Y; Adams C; Wills ML; Bhowmick NA; Adams MC; Brock JW; Hayward SW; Matusik RJ; Pope JC
    J Urol; 2008 Oct; 180(4 Suppl):1784-9. PubMed ID: 18721943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.