These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11215659)

  • 1. Transport of Escherichia coli in sand columns with constant and changing water contents.
    Powelson DK; Mills AL
    J Environ Qual; 2001; 30(1):238-45. PubMed ID: 11215659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of Escherichia coli through variably saturated sand columns and modeling approaches.
    Jiang G; Noonan MJ; Buchan GD; Smith N
    J Contam Hydrol; 2007 Aug; 93(1-4):2-20. PubMed ID: 17336421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of soil properties on saturated and unsaturated virus transport through columns.
    Chu Y; Jin Y; Baumann T; Yates MV
    J Environ Qual; 2003; 32(6):2017-25. PubMed ID: 14674523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of organic waste type and soil structure on the bacterial filtration rates in unsaturated intact soil columns.
    Mosaddeghi MR; Mahboubi AA; Zandsalimi S; Unc A
    J Environ Manage; 2009 Feb; 90(2):730-9. PubMed ID: 18353528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring and modelling straining of Escherichia coli in saturated porous media.
    Foppen JW; van Herwerden M; Schijven J
    J Contam Hydrol; 2007 Aug; 93(1-4):236-54. PubMed ID: 17466406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and Retention of Fecal Indicator Bacteria in Unsaturated Porous Media: Effect of Transient Water Flow.
    Soltani Tehrani R; Hornstra L; van Dam J; Cirkel DG
    Appl Environ Microbiol; 2023 Aug; 89(8):e0021923. PubMed ID: 37458609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Escherichia coli and Rhodococcus erythropolis transport through wettable and water repellent porous media.
    Sepehrnia N; Bachmann J; Hajabbasi MA; Afyuni M; Horn MA
    Colloids Surf B Biointerfaces; 2018 Dec; 172():280-287. PubMed ID: 30173095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering solutions to improve the removal of fecal indicator bacteria by bioinfiltration systems during intermittent flow of stormwater.
    Mohanty SK; Torkelson AA; Dodd H; Nelson KL; Boehm AB
    Environ Sci Technol; 2013 Oct; 47(19):10791-8. PubMed ID: 23721343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling fecal bacteria transport and retention in agricultural and urban soils under saturated and unsaturated flow conditions.
    Balkhair KS
    Water Res; 2017 Mar; 110():313-320. PubMed ID: 28039813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of Escherichia coli and F-RNA bacteriophages in a 5m column of saturated pea gravel.
    Sinton LW; Mackenzie ML; Karki N; Braithwaite RR; Hall CH; Flintoft MJ
    J Contam Hydrol; 2010 Sep; 117(1-4):71-81. PubMed ID: 20624661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of clay in a sandy soil on saturated/unsaturated pore water flow and dissolved chloride transport from road salt applications.
    Higashino M; Aso D; Stefan HG
    Environ Sci Pollut Res Int; 2021 May; 28(18):22693-22704. PubMed ID: 33423196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of water content on strontium retardation factor and distribution coefficient in Chinese loess.
    Huo L; Qian T; Hao J; Liu H; Zhao D
    J Radiol Prot; 2013 Dec; 33(4):791-807. PubMed ID: 24047556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissolved gases as partitioning tracers for determination of hydrogeological parameters.
    Vulava VM; Perry EB; Romanek CS; Seaman JC
    Environ Sci Technol; 2002 Jan; 36(2):254-62. PubMed ID: 11827060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport, retention, and release of Escherichia coli and Rhodococcus erythropolis through dry natural soils as affected by water repellency.
    Sepehrnia N; Bachmann J; Hajabbasi MA; Rezanezhad F; Lichner L; Hallett PD; Coyne M
    Sci Total Environ; 2019 Dec; 694():133666. PubMed ID: 31394325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virus transport during infiltration of a wetting front into initially unsaturated sand columns.
    Kenst AB; Perfect E; Wilhelm SW; Zhuang J; McCarthy JF; McKay LD
    Environ Sci Technol; 2008 Feb; 42(4):1102-8. PubMed ID: 18351079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical solutions for reactive transport under an infiltration-redistribution cycle.
    Severino G; Indelman P
    J Contam Hydrol; 2004 May; 70(1-2):89-115. PubMed ID: 15068870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the effects of variable water chemistry on bacterial transport during infiltration.
    Zhang H; Nordin NA; Olson MS
    J Contam Hydrol; 2013 Jul; 150():54-64. PubMed ID: 23673087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of water content on reactive transport of 85Sr in Chernobyl sand columns.
    Szenknect S; Ardois C; Dewière L; Gaudet JP
    J Contam Hydrol; 2008 Aug; 100(1-2):47-57. PubMed ID: 18586351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of methods to sample fecal indicator bacteria in foreshore sand and pore water at freshwater beaches.
    Vogel LJ; Edge TA; O'Carroll DM; Solo-Gabriele HM; Kushnir CSE; Robinson CE
    Water Res; 2017 Sep; 121():204-212. PubMed ID: 28538189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virus movement in soil during saturated and unsaturated flow.
    Lance JC; Gerba CP
    Appl Environ Microbiol; 1984 Feb; 47(2):335-7. PubMed ID: 6324673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.