BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11215917)

  • 1. A system for determination of 3D vessel tree centerlines from biplane images.
    Hoffmann KR; Sen A; Lan L; Chua KG; Esthappan J; Mazzucco M
    Int J Card Imaging; 2000 Oct; 16(5):315-30. PubMed ID: 11215917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of three-dimensional angiographic data obtained by self-calibration of multiview imaging.
    Noël PB; Hoffmann KR; Kasodekar S; Walczak AM; Schafer S
    Med Phys; 2006 Oct; 33(10):3901-11. PubMed ID: 17089852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biplane X-ray angiograms, intravascular ultrasound, and 3D visualization of coronary vessels.
    Hoffmann KR; Wahle A; Pellot-Barakat C; Sklansky J; Sonka M
    Int J Card Imaging; 1999 Dec; 15(6):495-512. PubMed ID: 10768744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved determination of biplane imaging geometry from two projection images and its application to three-dimensional reconstruction of coronary arterial trees.
    Chen SY; Metz CE
    Med Phys; 1997 May; 24(5):633-54. PubMed ID: 9167155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative evaluation of the three dimensional reconstruction of patients' coronary arteries.
    Klein JL; Hoff JG; Peifer JW; Folks R; Cooke CD; King SB; Garcia EV
    Int J Card Imaging; 1998 Apr; 14(2):75-87. PubMed ID: 9617637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of imaging geometries calculated from biplane images.
    Esthappan J; Harauchi H; Hoffmann KR
    Med Phys; 1998 Jun; 25(6):965-75. PubMed ID: 9650187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of 3D positions of pacemaker leads from biplane angiographic sequences.
    Hoffmann KR; Williams BB; Esthappan J; Chen SY; Carroll JD; Harauchi H; Doerr V; Kay GN; Eberhardt A; Overland M
    Med Phys; 1997 Dec; 24(12):1854-62. PubMed ID: 9434968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative evaluation of vessel tracking techniques on coronary angiograms.
    Sen A; Lan L; Doi K; Hoffmann KR
    Med Phys; 1999 May; 26(5):698-706. PubMed ID: 10360529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Point-Cloud Method for Automated 3D Coronary Tree Reconstruction From Multiple Non-Simultaneous Angiographic Projections.
    Banerjee A; Galassi F; Zacur E; De Maria GL; Choudhury RP; Grau V
    IEEE Trans Med Imaging; 2020 Apr; 39(4):1278-1290. PubMed ID: 31613752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coronary x-ray angiographic reconstruction and image orientation.
    Sprague K; Drangova M; Lehmann G; Slomka P; Levin D; Chow B; deKemp R
    Med Phys; 2006 Mar; 33(3):707-18. PubMed ID: 16878574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of the Gatortail method for accurate sizing of pulmonary vessels from 3D medical images.
    O'Dell WG; Gormaley AK; Prida DA
    Med Phys; 2017 Dec; 44(12):6314-6328. PubMed ID: 28905390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional reconstruction of myocardial contrast perfusion from biplane cineangiograms by means of linear programming techniques.
    Dumay AC; Minderhoud H; Gerbrands JJ; Zijlstra F; Essed CE; Serruys PW; Reiber JH
    Int J Card Imaging; 1988; 3(2-3):141-52. PubMed ID: 3171240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic detection of three-dimensional vascular tree centerlines and bifurcations in high-resolution magnetic resonance angiography.
    Zhang L; Chapman BE; Parker DL; Roberts JA; Guo J; Vemuri P; Moon SM; Noo F
    Invest Radiol; 2005 Oct; 40(10):661-71. PubMed ID: 16189435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical evaluation of angiographic multiple-view 3D reconstruction.
    Noël PB; Hoffmann KR; Kasodekar S; Walczak AM; Schafer S; Dmochowski J
    Int J Comput Assist Radiol Surg; 2009 Sep; 4(5):497-508. PubMed ID: 20033533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3-D quantitative vascular shape analysis for arterial bifurcations via dynamic tube fitting.
    Wang Y; Liatsis P
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):1850-60. PubMed ID: 22180504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonrigid 2D/3D registration of coronary artery models with live fluoroscopy for guidance of cardiac interventions.
    Rivest-Hénault D; Sundar H; Cheriet M
    IEEE Trans Med Imaging; 2012 Aug; 31(8):1557-72. PubMed ID: 22531755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel approach for 3-d reconstruction of coronary arteries from two uncalibrated angiographic images.
    Yang J; Wang Y; Liu Y; Tang S; Chen W
    IEEE Trans Image Process; 2009 Jul; 18(7):1563-72. PubMed ID: 19414289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of image-based method for extraction of coronary morphometry.
    Wischgoll T; Choy JS; Ritman EL; Kassab GS
    Ann Biomed Eng; 2008 Mar; 36(3):356-68. PubMed ID: 18228141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coronary artery WSS profiling using a geometry reconstruction based on biplane angiography.
    Goubergrits L; Wellnhofer E; Kertzscher U; Affeld K; Petz C; Hege HC
    Ann Biomed Eng; 2009 Apr; 37(4):682-91. PubMed ID: 19229618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images.
    Bourantas CV; Kourtis IC; Plissiti ME; Fotiadis DI; Katsouras CS; Papafaklis MI; Michalis LK
    Comput Med Imaging Graph; 2005 Dec; 29(8):597-606. PubMed ID: 16278063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.