These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 11215918)

  • 1. Quantification of 3-D coronary arterial motion using clinical biplane cineangiograms.
    Ding Z; Friedman MH
    Int J Card Imaging; 2000 Oct; 16(5):331-46. PubMed ID: 11215918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional motion tracking of coronary arteries in biplane cineangiograms.
    Shechter G; Devernay F; Coste-Manière E; Quyyumi A; McVeigh ER
    IEEE Trans Med Imaging; 2003 Apr; 22(4):493-503. PubMed ID: 12774895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coronary artery dynamics in vivo.
    Ding Z; Zhu H; Friedman MH
    Ann Biomed Eng; 2002 Apr; 30(4):419-29. PubMed ID: 12085995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of human coronary arterial motion and its potential role in coronary atherogenesis.
    Ding Z; Friedman MH
    J Biomech Eng; 2000 Oct; 122(5):488-92. PubMed ID: 11091949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Motion analysis of the coronary arteries in coronary cineangiograms].
    Kaneko M; Onoe M; Fujii J; Aizawa T; Kato K
    Iyodenshi To Seitai Kogaku; 1983 Jun; 21(3):188-95. PubMed ID: 6663829
    [No Abstract]   [Full Text] [Related]  

  • 6. Estimation of epicardial strain using the motions of coronary bifurcations in biplane cinéangiography.
    Young AA; Hunter PJ; Smaill BH
    IEEE Trans Biomed Eng; 1992 May; 39(5):526-31. PubMed ID: 1526643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of coronary artery curvature obtained from biplane cineangiograms.
    Gross MF; Friedman MH
    J Biomech; 1998 May; 31(5):479-84. PubMed ID: 9727346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of distensibility of blood vessels using cineangiograms.
    Sugahara T; Yanagihara Y; Uyama C; Maeda H; Takafuchi M; Azumi T
    Invest Radiol; 1989 Sep; 24(9):672-7. PubMed ID: 2807820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional reconstruction of myocardial contrast perfusion from biplane cineangiograms by means of linear programming techniques.
    Dumay AC; Minderhoud H; Gerbrands JJ; Zijlstra F; Essed CE; Serruys PW; Reiber JH
    Int J Card Imaging; 1988; 3(2-3):141-52. PubMed ID: 3171240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of reconstructed 3-D coronary arterial tree and intracoronary devices.
    Chen SY; Carroll JD; Messenger JC
    IEEE Trans Med Imaging; 2002 Jul; 21(7):724-40. PubMed ID: 12374311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of coronary artery dynamics pre- and post-stenting.
    Zhu H; Warner JJ; Gehrig TR; Friedman MH
    J Biomech; 2003 May; 36(5):689-97. PubMed ID: 12694999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospective motion correction of X-ray images for coronary interventions.
    Shechter G; Shechter B; Resar JR; Beyar R
    IEEE Trans Med Imaging; 2005 Apr; 24(4):441-50. PubMed ID: 15822802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-vivo validation of spatially correct three-dimensional reconstruction of human coronary arteries by integrating intravascular ultrasound and biplane angiography.
    Giannoglou GD; Chatzizisis YS; Sianos G; Tsikaderis D; Matakos A; Koutkias V; Diamantopoulos P; Maglaveras N; Parcharidis GE; Louridas GE
    Coron Artery Dis; 2006 Sep; 17(6):533-43. PubMed ID: 16905966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cardiac motion on right coronary artery hemodynamics.
    Zeng D; Ding Z; Friedman MH; Ethier CR
    Ann Biomed Eng; 2003 Apr; 31(4):420-9. PubMed ID: 12723683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscope-based near-infrared stereo-imaging system for quantifying the motion of the murine epicardial coronary arteries in vivo.
    Long DS; Zhu H; Friedman MH
    J Biomed Opt; 2013 Sep; 18(9):096013. PubMed ID: 24057233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel approach for 3-d reconstruction of coronary arteries from two uncalibrated angiographic images.
    Yang J; Wang Y; Liu Y; Tang S; Chen W
    IEEE Trans Image Process; 2009 Jul; 18(7):1563-72. PubMed ID: 19414289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coronary artery WSS profiling using a geometry reconstruction based on biplane angiography.
    Goubergrits L; Wellnhofer E; Kertzscher U; Affeld K; Petz C; Hege HC
    Ann Biomed Eng; 2009 Apr; 37(4):682-91. PubMed ID: 19229618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images.
    Bourantas CV; Kourtis IC; Plissiti ME; Fotiadis DI; Katsouras CS; Papafaklis MI; Michalis LK
    Comput Med Imaging Graph; 2005 Dec; 29(8):597-606. PubMed ID: 16278063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between the dynamic geometry and wall thickness of a human coronary artery.
    Zhu H; Friedman MH
    Arterioscler Thromb Vasc Biol; 2003 Dec; 23(12):2260-5. PubMed ID: 14500289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computing the skeleton of coronary arteries in cineangiograms.
    Nguyen TV; Sklansky J
    Comput Biomed Res; 1986 Oct; 19(5):428-44. PubMed ID: 3769471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.