BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 11216841)

  • 1. Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.).
    Gunawardena AH; Pearce DM; Jackson MB; Hawes CR; Evans DE
    Planta; 2001 Jan; 212(2):205-14. PubMed ID: 11216841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions.
    Takahashi H; Yamauchi T; Rajhi I; Nishizawa NK; Nakazono M
    Ann Bot; 2015 May; 115(6):879-94. PubMed ID: 25858325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylene-dependent aerenchyma formation in adventitious roots is regulated differently in rice and maize.
    Yamauchi T; Tanaka A; Mori H; Takamure I; Kato K; Nakazono M
    Plant Cell Environ; 2016 Oct; 39(10):2145-57. PubMed ID: 27169562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A flooding-induced xyloglucan endo-transglycosylase homolog in maize is responsive to ethylene and associated with aerenchyma.
    Saab IN; Sachs MM
    Plant Physiol; 1996 Sep; 112(1):385-91. PubMed ID: 8819334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays).
    Abiko T; Kotula L; Shiono K; Malik AI; Colmer TD; Nakazono M
    Plant Cell Environ; 2012 Sep; 35(9):1618-30. PubMed ID: 22471697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of the ethylene biosynthetic machinery in maize roots is regulated in response to hypoxia.
    Geisler-Lee J; Caldwell C; Gallie DR
    J Exp Bot; 2010 Mar; 61(3):857-71. PubMed ID: 20008461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the early stages of programmed cell death in maize root cells by using comet assay and the combination of cell electrophoresis with annexin binding.
    Ning SB; Song YC; Damme Pv Pv
    Electrophoresis; 2002 Jul; 23(13):2096-102. PubMed ID: 12210264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerenchyma formation in roots of maize during sulphate starvation.
    Bouranis DL; Chorianopoulou SN; Siyiannis VF; Protonotarios VE; Hawkesford MJ
    Planta; 2003 Jul; 217(3):382-91. PubMed ID: 12728316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerenchyma formation in the wetland plant Juncus effusus is independent of ethylene.
    Visser EJ; Bögemann GM
    New Phytol; 2006; 171(2):305-14. PubMed ID: 16866938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmed cell death associated with the formation of schizo-lysigenous aerenchyma in
    Xie Q; Hou H; Yan P; Zhang H; Lv Y; Li X; Chen L; Pang D; Hu Y; Ni X
    Front Plant Sci; 2022; 13():968841. PubMed ID: 36247559
    [No Abstract]   [Full Text] [Related]  

  • 11. Lysigenous aerenchyma formation involves non-apoptotic programmed cell death in rice (Oryza sativa L.) roots.
    Joshi R; Kumar P
    Physiol Mol Biol Plants; 2012 Jan; 18(1):1-9. PubMed ID: 23573035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling-based age-dependent analysis reveals the net patterns of ethylene-dependent and -independent aerenchyma formation in rice and maize roots.
    Yamauchi T; Nakazono M
    Plant Sci; 2022 Aug; 321():111340. PubMed ID: 35696932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A lysigenic programmed cell death-dependent process shapes schizogenously formed aerenchyma in the stems of the waterweed Egeria densa.
    Bartoli G; Forino LM; Durante M; Tagliasacchi AM
    Ann Bot; 2015 Jul; 116(1):91-9. PubMed ID: 26002256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Ethylene-induced activation of xylanase in adventitious roots of maize as a response to the stress effect of root submersion].
    Bragina TV; Martinovich LI; Rodionova NA; Bezborodov AM; Grineva GM
    Prikl Biokhim Mikrobiol; 2001; 37(6):722-5. PubMed ID: 11771328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmed cell death during embryogenesis in maize.
    Giuliani C; Consonni G; Gavazzi G; Colombo M; Dolfini S
    Ann Bot; 2002 Aug; 90(2):287-92. PubMed ID: 12197527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of auxin and ethylene in aerenchyma formation in sugarcane roots.
    Tavares EQP; Grandis A; Lembke CG; Souza GM; Purgatto E; De Souza AP; Buckeridge MS
    Plant Signal Behav; 2018 Mar; 13(3):e1422464. PubMed ID: 29286887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic Changes are Associated with Programmed Cell Death Induced by Heat Stress in Seedling Leaves of Zea mays.
    Wang P; Zhao L; Hou H; Zhang H; Huang Y; Wang Y; Li H; Gao F; Yan S; Li L
    Plant Cell Physiol; 2015 May; 56(5):965-76. PubMed ID: 25670712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell cycle disruption and apoptosis as mechanisms of toxicity of organochlorines in Zea mays roots.
    Blondel C; Melesan M; San Miguel A; Veyrenc S; Meresse P; Pezet M; Reynaud S; Raveton M
    J Hazard Mater; 2014 Jul; 276():312-22. PubMed ID: 24892778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmed cell death and aerenchyma formation in roots.
    Drew MC; He CJ; Morgan PW
    Trends Plant Sci; 2000 Mar; 5(3):123-7. PubMed ID: 10707078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethylene-promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays L.
    Drew MC; Jackson MB; Giffard S
    Planta; 1979 Oct; 147(1):83-8. PubMed ID: 24310899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.