These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 11216847)

  • 1. Cytosolic glutamine synthetase and not nitrate reductase from the green alga Chlamydomonas reinhardtii is phosphorylated and binds 14-3-3 proteins.
    Pozuelo M; MacKintosh C; Galván A; Fernández E
    Planta; 2001 Jan; 212(2):264-9. PubMed ID: 11216847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chloroplastic glutamine synthetase (GS-2) of tobacco is phosphorylated and associated with 14-3-3 proteins inside the chloroplast.
    Riedel J; Tischner R; Mäck G
    Planta; 2001 Jul; 213(3):396-401. PubMed ID: 11506362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of glutamine synthetase genes in Chlamydomonas reinhardtii.
    Chen Q; Silflow CD
    Plant Physiol; 1996 Nov; 112(3):987-96. PubMed ID: 8938407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibodies to assess phosphorylation of spinach leaf nitrate reductase on serine 543 and its binding to 14-3-3 proteins.
    Weiner H; Kaiser WM
    J Exp Bot; 2001 Jun; 52(359):1165-72. PubMed ID: 11432934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide controls nitrate and ammonium assimilation in Chlamydomonas reinhardtii.
    Sanz-Luque E; Ocaña-Calahorro F; Llamas A; Galvan A; Fernandez E
    J Exp Bot; 2013 Aug; 64(11):3373-83. PubMed ID: 23918969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation and 14-3-3 binding of Arabidopsis 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.
    Kulma A; Villadsen D; Campbell DG; Meek SE; Harthill JE; Nielsen TH; MacKintosh C
    Plant J; 2004 Mar; 37(5):654-67. PubMed ID: 14871307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-translational regulation of cytosolic glutamine synthetase of Medicago truncatula.
    Lima L; Seabra A; Melo P; Cullimore J; Carvalho H
    J Exp Bot; 2006; 57(11):2751-61. PubMed ID: 16831848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide production mediated by nitrate reductase in the green alga Chlamydomonas reinhardtii: an alternative NO production pathway in photosynthetic organisms.
    Sakihama Y; Nakamura S; Yamasaki H
    Plant Cell Physiol; 2002 Mar; 43(3):290-7. PubMed ID: 11917083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular distribution of 14-3-3 proteins in the unicellular green alga Chlamydomonas reinhardtii.
    Voigt J; Liebich I; Kiess M; Frank R
    Eur J Biochem; 2001 Dec; 268(24):6449-57. PubMed ID: 11737199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding to 14-3-3 proteins is not sufficient to inhibit nitrate reductase in spinach leaves.
    Weiner H; Kaiser WM
    FEBS Lett; 2000 Sep; 480(2-3):217-20. PubMed ID: 11034332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification of a plant nucleotide pyrophosphatase as a protein that interferes with nitrate reductase and glutamine synthetase assays.
    Moorhead GB; Meek SE; Douglas P; Bridges D; Smith CS; Morrice N; MacKintosh C
    Eur J Biochem; 2003 Mar; 270(6):1356-62. PubMed ID: 12631294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic enzymes as targets for 14-3-3 proteins.
    Huber SC; MacKintosh C; Kaiser WM
    Plant Mol Biol; 2002 Dec; 50(6):1053-63. PubMed ID: 12516872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-translational regulation of cytosolic glutamine synthetase by reversible phosphorylation and 14-3-3 protein interaction.
    Finnemann J; Schjoerring JK
    Plant J; 2000 Oct; 24(2):171-81. PubMed ID: 11069692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 14-3-3 proteins control proteolysis of nitrate reductase in spinach leaves.
    Weiner H; Kaiser WM
    FEBS Lett; 1999 Jul; 455(1-2):75-8. PubMed ID: 10428475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of nitrate consumption by nitrite in entrapped Chlamydomonas reinhardtii cells.
    Garbayo I; León R; Vigara J; Vílchez C
    Bioresour Technol; 2002 Feb; 81(3):207-15. PubMed ID: 11800487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: localization, relative proportion and their role in ammonium assimilation or nitrogen transport.
    Becker TW; Carrayol E; Hirel B
    Planta; 2000 Nov; 211(6):800-6. PubMed ID: 11144264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homology predicted structure and functional interaction of ferredoxin from the eukaryotic alga Chlamydomonas reinhardtii with nitrite reductase and glutamate synthase.
    García-Sánchez MI; Díaz-Quintana A; Gotor C; Jacquot JP; De la Rosa MA; Vega JM
    J Biol Inorg Chem; 2000 Dec; 5(6):713-9. PubMed ID: 11128998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The activity of the high-affinity nitrate transport system I (NRT2;1, NAR2) is responsible for the efficient signalling of nitrate assimilation genes in Chlamydomonas reinhardtii.
    Rexach J; Llamas A; Fernández E; Galván A
    Planta; 2002 Aug; 215(4):606-11. PubMed ID: 12172843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of plant NR activity by reversible phosphorylation, 14-3-3 proteins and proteolysis.
    MacKintosh C; Meek SE
    Cell Mol Life Sci; 2001 Feb; 58(2):205-14. PubMed ID: 11289302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification of a nitrate reductase kinase from Spinacea oleracea leaves, and its identification as a calmodulin-domain protein kinase.
    Douglas P; Moorhead G; Hong Y; Morrice N; MacKintosh C
    Planta; 1998 Oct; 206(3):435-42. PubMed ID: 9763711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.