These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery. Zygmunt PM; Högestätt ED Br J Pharmacol; 1996 Apr; 117(7):1600-6. PubMed ID: 8730760 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms of acetylcholine-induced vasorelaxation in high K+-stimulated rabbit renal arteries. Kwon SC J Vet Med Sci; 2001 Jan; 63(1):41-4. PubMed ID: 11217061 [TBL] [Abstract][Full Text] [Related]
5. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery. White R; Hiley CR Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801 [TBL] [Abstract][Full Text] [Related]
6. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery. Dong H; Waldron GJ; Cole WC; Triggle CR Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009 [TBL] [Abstract][Full Text] [Related]
7. Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance. García-Pascual A; Labadía A; Jimenez E; Costa G Br J Pharmacol; 1995 Aug; 115(7):1221-30. PubMed ID: 7582549 [TBL] [Abstract][Full Text] [Related]
8. Endothelium-dependent vasorelaxation independent of nitric oxide and K(+) release in isolated renal arteries of rats. Jiang F; Dusting GJ Br J Pharmacol; 2001 Apr; 132(7):1558-64. PubMed ID: 11264250 [TBL] [Abstract][Full Text] [Related]
9. Nitric oxide-dependent and -independent mechanisms in the relaxation elicited by acetylcholine in fetal rat aorta. Martínez-Orgado J; González R; Alonso MJ; Marín J Life Sci; 1999; 64(4):269-77. PubMed ID: 10027761 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of nitric oxide-independent relaxations induced by carbachol and acetylcholine in rat isolated renal arteries. Jiang F; Li CG; Rand MJ Br J Pharmacol; 2000 Jul; 130(6):1191-200. PubMed ID: 10903955 [TBL] [Abstract][Full Text] [Related]
11. The involvement of K+ channels and the possible pathway of EDHF in the rabbit femoral artery. Kwon SC; Pyun WB; Park GY; Choi HK; Paik KS; Kang BS Yonsei Med J; 1999 Aug; 40(4):331-8. PubMed ID: 10487135 [TBL] [Abstract][Full Text] [Related]
12. Impaired endothelium-dependent relaxation in mesenteric arteries of reduced renal mass hypertensive rats. Kimura K; Nishio I Scand J Clin Lab Invest; 1999 May; 59(3):199-204. PubMed ID: 10400164 [TBL] [Abstract][Full Text] [Related]
13. Role of EDHF in the vasodilatory effect of loop diuretics in guinea-pig mesenteric resistance arteries. Pourageaud F; Bappel-Gozalbes C; Marthan R; Freslon JL Br J Pharmacol; 2000 Nov; 131(6):1211-9. PubMed ID: 11082130 [TBL] [Abstract][Full Text] [Related]
14. NG-nitro-L-arginine-resistant endothelium-dependent relaxation induced by acetylcholine in the rabbit renal artery. Kitagawa S; Yamaguchi Y; Kunitomo M; Sameshima E; Fujiwara M Life Sci; 1994; 55(7):491-8. PubMed ID: 8041228 [TBL] [Abstract][Full Text] [Related]
15. Endothelium-dependent relaxation of small arteries from essential hypertensive patients: mechanisms and comparison with normotensive subjects and with responses of vessels from spontaneously hypertensive rats. Deng LY; Li JS; Schiffrin EL Clin Sci (Lond); 1995 Jun; 88(6):611-22. PubMed ID: 7543395 [TBL] [Abstract][Full Text] [Related]
16. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF. Zygmunt PM; Plane F; Paulsson M; Garland CJ; Högestätt ED Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786 [TBL] [Abstract][Full Text] [Related]
17. Endothelium-dependent nitric oxide and hyperpolarization-mediated venous relaxation pathways in rat inferior vena cava. Raffetto JD; Yu P; Reslan OM; Xia Y; Khalil RA J Vasc Surg; 2012 Jun; 55(6):1716-25. PubMed ID: 22209615 [TBL] [Abstract][Full Text] [Related]
18. Involvement of K+ channel permeability changes in the L-NAME and indomethacin resistant part of adenosine-5'-O-(2-thiodiphosphate)-induced relaxation of pancreatic vascular bed. Hillaire-Buys D; Chapal J; Linck N; Blayac JP; Petit P; Loubatières-Mariani MM Br J Pharmacol; 1998 May; 124(1):149-56. PubMed ID: 9630354 [TBL] [Abstract][Full Text] [Related]
19. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries. Prieto D; Simonsen U; Hernández M; García-Sacristán A Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568 [TBL] [Abstract][Full Text] [Related]
20. Characterization of nitric oxide- and prostaglandin-independent relaxation in response to acetylcholine in rabbit renal artery. Kagota S; Yamaguchi Y; Nakamura K; Kunitomo M Clin Exp Pharmacol Physiol; 1999 Oct; 26(10):790-6. PubMed ID: 10549403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]