BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11217754)

  • 1. Dispersion reduction in pressure-driven flow through microetched channels.
    Dutta D; Leighton DT
    Anal Chem; 2001 Feb; 73(3):504-13. PubMed ID: 11217754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Channel Sidewalls on Joule Heating Induced Sample Dispersion in Rectangular Ducts.
    Dutta D
    Int J Heat Mass Transf; 2016 Feb; 93():529-537. PubMed ID: 26597437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oscillating laminar electrokinetic flow in infinitely extended rectangular microchannels.
    Yang J; Bhattacharyya A; Masliyah JH; Kwok DY
    J Colloid Interface Sci; 2003 May; 261(1):21-31. PubMed ID: 12725820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersion in large aspect ratio microchannels for open-channel liquid chromatography.
    Dutta D; Leighton DT
    Anal Chem; 2003 Jan; 75(1):57-70. PubMed ID: 12530819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel.
    Park HM; Lee WM
    Lab Chip; 2008 Jul; 8(7):1163-70. PubMed ID: 18584093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrokinetic secondary-flow behavior in a curved microchannel under dissimilar surface conditions.
    Chun MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036312. PubMed ID: 21517592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroosmotic transport through rectangular channels with small zeta potentials.
    Dutta D
    J Colloid Interface Sci; 2007 Nov; 315(2):740-6. PubMed ID: 17761188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of an electrokinetic backflow for enhancing pressure-driven charge based separations in sub-micrometer deep channels.
    Xia L; Deb R; Yanagisawa N; Dutta D
    Anal Chim Acta; 2022 Nov; 1233():340476. PubMed ID: 36283775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dispersion reduction in open-channel liquid electrochromatographic columns via pressure-driven back flow.
    Dutta D; Leighton DT
    Anal Chem; 2003 Jul; 75(14):3352-9. PubMed ID: 14570184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadening of analyte streams due to a transverse pressure gradient in free-flow isoelectric focusing.
    Dutta D
    J Chromatogr A; 2017 Feb; 1484():85-92. PubMed ID: 28081900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment and numerical search for minimal Taylor-Aris dispersion in micro-machined channels of nearly rectangular cross-section.
    Callewaert M; De Malsche W; Ottevaere H; Thienpont H; Desmet G
    J Chromatogr A; 2014 Nov; 1368():70-81. PubMed ID: 25442700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure generation at the junction of two microchannels with different depths.
    Yanagisawa N; Dutta D
    Electrophoresis; 2010 Jun; 31(12):2080-8. PubMed ID: 20503204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analytic description of electrodynamic dispersion in free-flow zone electrophoresis.
    Dutta D
    J Chromatogr A; 2015 Jul; 1404():124-30. PubMed ID: 26044384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroosmotic flows in microchannels with finite inertial and pressure forces.
    Santiago JG
    Anal Chem; 2001 May; 73(10):2353-65. PubMed ID: 11393863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled concentration polarization and electroosmotic circulation near micro/nanointerfaces: Taylor-Aris model of hydrodynamic dispersion and limits of its applicability.
    Yaroshchuk A; Zholkovskiy E; Pogodin S; Baulin V
    Langmuir; 2011 Sep; 27(18):11710-21. PubMed ID: 21812464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic dispersion due to combined pressure-driven and electroosmotic flow through microchannels with a thin double layer.
    Zholkovskij EK; Masliyah JH
    Anal Chem; 2004 May; 76(10):2708-18. PubMed ID: 15144179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure-driven laminar flow in tangential microchannels: an elastomeric microfluidic switch.
    Ismagilov RF; Rosmarin TD; Kenis JA; Chiu DT; Zhang W; Stone HA; Whitesides GM
    Anal Chem; 2001 Oct; 73(19):4682-7. PubMed ID: 11605847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-dispersion electrokinetic flows for expanded separation channels in microfluidic systems: multiple faceted interfaces.
    Fiechtner GJ; Cummings EB
    J Chromatogr A; 2004 Feb; 1027(1-2):245-57. PubMed ID: 14971509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetic generation of temporally and spatially stable concentration gradients in microchannels.
    Biddiss E; Li D
    J Colloid Interface Sci; 2005 Aug; 288(2):606-15. PubMed ID: 15927632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusioosmotic flow in rectangular microchannels.
    Hoshyargar V; Nezameddin Ashrafizadeh S; Sadeghi A
    Electrophoresis; 2016 Mar; 37(5-6):809-17. PubMed ID: 26995195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.