These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 11217778)

  • 1. Formation of natural pH gradients in a microfluidic device under flow conditions: model and experimental validation.
    Cabrera CR; Finlayson B; Yager P
    Anal Chem; 2001 Feb; 73(3):658-66. PubMed ID: 11217778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of natural pH gradients in microfluidic channels for use in isoelectric focusing.
    Macounova K; Cabrera CR; Holl MR; Yager P
    Anal Chem; 2000 Aug; 72(16):3745-51. PubMed ID: 10959958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Deformation of Polydimethylsiloxane (PDMS) Microfluidic Channels Filled with Embedded Circular Obstacles under Certain Circumstances.
    Roh C; Lee J; Kang C
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27322239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration and separation of proteins in microfluidic channels on the basis of transverse IEF.
    Macounová K; Cabrera CR; Yager P
    Anal Chem; 2001 Apr; 73(7):1627-33. PubMed ID: 11321320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2005 Jun; 5(6):634-45. PubMed ID: 15915256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic high-resolution free-flow isoelectric focusing.
    Kohlheyer D; Eijkel JC; Schlautmann S; van den Berg A; Schasfoort RB
    Anal Chem; 2007 Nov; 79(21):8190-8. PubMed ID: 17902700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Generation and Detection of Transient Concentration Gradients in Microfluidic Channels. Theoretical and Experimental Investigations.
    Abadie T; Sella C; Perrodin P; Thouin L
    Front Chem; 2019; 7():704. PubMed ID: 31709233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of Joule heating effects on temperature gradient in diverging microchannels for isoelectric focusing applications.
    Kates B; Ren CL
    Electrophoresis; 2006 May; 27(10):1967-76. PubMed ID: 16703632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical Generation of Steady-State Linear Concentration Gradients within Microfluidic Channels Perpendicular to the Flow Field.
    Perrodin P; Sella C; Thouin L
    Anal Chem; 2020 Jun; 92(11):7699-7707. PubMed ID: 32352761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of 3D multi-layer microfluidic gradient generator.
    Ha JH; Kim TH; Lee JM; Ahrberg CD; Chung BG
    Electrophoresis; 2017 Jan; 38(2):270-277. PubMed ID: 27801504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady state electrolysis and isoelectric focusing.
    Hagedorn R; Fuhr G
    Electrophoresis; 1990 Apr; 11(4):281-9. PubMed ID: 2340821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-chip gradient generation in 256 microfluidic cell cultures: simulation and experimental validation.
    Somaweera H; Haputhanthri SO; Ibraguimov A; Pappas D
    Analyst; 2015 Aug; 140(15):5029-38. PubMed ID: 26050759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels.
    Kamholz AE; Yager P
    Biophys J; 2001 Jan; 80(1):155-60. PubMed ID: 11159391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Microfluidic pH Measurement Device with a Flowing Liquid Junction.
    Yamada A; Suzuki M
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28677614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free-flow zone electrophoresis and isoelectric focusing using a microfabricated glass device with ion permeable membranes.
    Kohlheyer D; Besselink GA; Schlautmann S; Schasfoort RB
    Lab Chip; 2006 Mar; 6(3):374-80. PubMed ID: 16511620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductivity properties of carrier ampholyte pH gradients in isoelectric focusing.
    Stoyanov AV; Das C; Fredrickson CK; Fan ZH
    Electrophoresis; 2005 Jan; 26(2):473-9. PubMed ID: 15657903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A web-based application for automated quantification of chemical gradients induced in microfluidic devices.
    Cóndor M; Rüberg T; Borau C; Piles J; García-Aznar JM
    Comput Biol Med; 2018 Apr; 95():118-128. PubMed ID: 29494849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels.
    Mosadegh B; Huang C; Park JW; Shin HS; Chung BG; Hwang SK; Lee KH; Kim HJ; Brody J; Jeon NL
    Langmuir; 2007 Oct; 23(22):10910-2. PubMed ID: 17910490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.