These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 11218122)

  • 21. Interpretation of dynamic frontal analysis data in solid/supercritical fluid adsorption systems. I: theory.
    Gritti F; Tarafder A; Guiochon G
    J Chromatogr A; 2013 May; 1290():73-81. PubMed ID: 23582857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local equilibrium theory analysis of chromatographic peak shapes in the presence of adsorbing modifiers.
    Rajendran A
    J Chromatogr A; 2017 Feb; 1485():52-61. PubMed ID: 28104236
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption at liquid interfaces: the generalized Langmuir isotherm and interfacial structure.
    Markin VS; Volkova-Gugeshashvili MI; Volkov AG
    J Phys Chem B; 2006 Jun; 110(23):11415-20. PubMed ID: 16771414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of adsorption from multicomponent solutions by activated carbon using single-solute parameters. Part II--Proposed equation.
    Alkhamis KA; Wurster DE
    AAPS PharmSciTech; 2002; 3(3):E23. PubMed ID: 12916938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling chromatographic columns non-equilibrium packed-bed adsorption with non-linear adsorption isotherms.
    Ozdural AR; Alkan A; Kerkhof PJ
    J Chromatogr A; 2004 Jul; 1041(1-2):77-85. PubMed ID: 15281256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamic characterization of separations on alkaline-stable silica-based C18 columns: why basic solutes may have better capacity and peak performance at higher pH.
    Samuelsson J; Franz A; Stanley BJ; Fornstedt T
    J Chromatogr A; 2007 Sep; 1163(1-2):177-89. PubMed ID: 17612549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Separation mechanism of nortriptyline and amytriptyline in RPLC.
    Gritti F; Guiochon G
    J Chromatogr A; 2005 Oct; 1090(1-2):39-57. PubMed ID: 16196132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimation of single solute adsorption isotherms applying the nonlinear frequency response method using non-optimal frequencies.
    Ilić M; Petkovska M; Seidel-Morgenstern A
    J Chromatogr A; 2008 Jul; 1200(2):183-92. PubMed ID: 18555261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of the adsorption mechanism of a peptide in reversed phase liquid chromatography, from pH controlled and uncontrolled solutions.
    Andrzejewska A; Gritti F; Guiochon G
    J Chromatogr A; 2009 May; 1216(18):3992-4004. PubMed ID: 19328489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Band splitting in overloaded isocratic elution chromatography III. Modeling of adsorbate-adsorbate interactions by a two-component extension of a BET kinetic isotherm model.
    Gritti F; Guiochon G
    J Chromatogr A; 2004 Feb; 1028(1):121-37. PubMed ID: 14969286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorbed solution model for prediction of normal-phase chromatography process with varying composition of the mobile phase.
    Piatkowski W; Petrushka I; Antos D
    J Chromatogr A; 2005 Oct; 1092(1):65-75. PubMed ID: 16188561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of surface excess isotherms in liquid chromatography.
    Vajda P; Felinger A; Guiochon G
    J Chromatogr A; 2013 May; 1291():41-7. PubMed ID: 23601291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption-desorption isotherm hysteresis of phenol on a C18-bonded surface.
    Gritti F; Guiochon G
    J Chromatogr A; 2003 Aug; 1010(2):153-76. PubMed ID: 12974287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparison of frontal and nonfrontal methods for determining solid-liquid adsorption isotherms using inverse liquid chromatography.
    Ylä-Mäihäniemi PP; Williams DR
    Langmuir; 2007 Mar; 23(7):4095-101. PubMed ID: 17328566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adsorption of proteins at the aqueous solution/alkane interface: Co-adsorption of protein and alkane.
    Miller R; Aksenenko EV; Zinkovych II; Fainerman VB
    Adv Colloid Interface Sci; 2015 Aug; 222():509-16. PubMed ID: 25813359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Description of Adsorption in Liquid Chromatography under Nonideal Conditions.
    Ortner F; Ruppli C; Mazzotti M
    Langmuir; 2018 May; 34(19):5655-5671. PubMed ID: 29664653
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption behaviour of sugars versus their activity in single and multicomponent liquid solutions.
    Nowak J; Poplewska I; Antos D; Seidel-Morgenstern A
    J Chromatogr A; 2009 Dec; 1216(50):8697-704. PubMed ID: 19201417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of competitive isotherms of enantiomers by a hybrid inverse method using overloaded band profiles and the periodic state of the simulated moving-bed process.
    Araújo JM; Rodrigues RC; Mota JP
    J Chromatogr A; 2008 May; 1189(1-2):302-13. PubMed ID: 18243230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of temperature on the adsorption behavior of tryptophan in reversed-phase liquid chromatography.
    Ahmad T; Guiochon G
    J Chromatogr A; 2006 Oct; 1129(2):174-88. PubMed ID: 16859697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption isotherms of the fullerenes C60 and C70 on a tetraphenylporphyrin-bonded silica.
    Gritti F; Guiochona G
    J Chromatogr A; 2004 Oct; 1053(1-2):59-69. PubMed ID: 15543972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.