These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11219506)

  • 1. Wave front-obstacle interactions in cardiac tissue: a computational study.
    Azene EM; Trayanova NA; Warman E
    Ann Biomed Eng; 2001 Jan; 29(1):35-46. PubMed ID: 11219506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavelet formation in excitable cardiac tissue: the role of wavefront-obstacle interactions in initiating high-frequency fibrillatory-like arrhythmias.
    Starobin JM; Zilberter YI; Rusnak EM; Starmer CF
    Biophys J; 1996 Feb; 70(2):581-94. PubMed ID: 8789078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling defibrillation: effects of fiber curvature.
    Trayanova N; Skouibine K
    J Electrocardiol; 1998; 31 Suppl():23-9. PubMed ID: 9988001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turbulent electrical activity at sharp-edged inexcitable obstacles in a model for human cardiac tissue.
    Majumder R; Pandit R; Panfilov AV
    Am J Physiol Heart Circ Physiol; 2014 Oct; 307(7):H1024-35. PubMed ID: 25108011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle.
    Cabo C; Pertsov AM; Baxter WT; Davidenko JM; Gray RA; Jalife J
    Circ Res; 1994 Dec; 75(6):1014-28. PubMed ID: 7525101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emitting waves from heterogeneity by a rotating electric field.
    Zhao YH; Lou Q; Chen JX; Sun WG; Ma J; Ying HP
    Chaos; 2013 Sep; 23(3):033141. PubMed ID: 24089977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of electrically induced reentrant circuits in a sheet of myocardium.
    Larson C; Dragnev L; Trayanova N
    Ann Biomed Eng; 2003; 31(7):768-80. PubMed ID: 12971610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curvature-Dependent Excitation Propagation in Cultured Cardiac Tissue.
    Kadota S; Kay MW; Magome N; Agladze K
    JETP Lett; 2012 Feb; 94(11):824-830. PubMed ID: 26705369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of strain-dependent conduction slowing on the re-entry formation and maintenance in cardiac muscle: 2D computer simulation.
    Syomin FA; Galushka VA; Tsaturyan AK
    Int J Numer Method Biomed Eng; 2023 Nov; 39(11):e3676. PubMed ID: 36562353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study.
    Faber GM; Rudy Y
    Biophys J; 2000 May; 78(5):2392-404. PubMed ID: 10777735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative filament tension in the Luo-Rudy model of cardiac tissue.
    Alonso S; Panfilov AV
    Chaos; 2007 Mar; 17(1):015102. PubMed ID: 17411259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling far field pacing for terminating spiral waves pinned to ischaemic heterogeneities in cardiac tissue.
    Boccia E; Luther S; Parlitz U
    Philos Trans A Math Phys Eng Sci; 2017 Jun; 375(2096):. PubMed ID: 28507234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two forms of spiral-wave reentry in an ionic model of ischemic ventricular myocardium.
    Xu A; Guevara MR
    Chaos; 1998 Mar; 8(1):157-174. PubMed ID: 12779719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attachment of meandering reentrant wave fronts to anatomic obstacles in the atrium. Role of the obstacle size.
    Ikeda T; Yashima M; Uchida T; Hough D; Fishbein MC; Mandel WJ; Chen PS; Karagueuzian HS
    Circ Res; 1997 Nov; 81(5):753-64. PubMed ID: 9351449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core.
    Beaumont J; Davidenko N; Davidenko JM; Jalife J
    Biophys J; 1998 Jul; 75(1):1-14. PubMed ID: 9649363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reentrant arrhythmias in the subacute infarction period. The proarrhythmic effect of flecainide acetate on functional reentrant circuits.
    Restivo M; Yin H; Caref EB; Patel AI; Ndrepepa G; Avitable MJ; Assadi MA; Isber N; el-Sherif N
    Circulation; 1995 Feb; 91(4):1236-46. PubMed ID: 7850964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insights into very slow conduction in branching cardiac tissue: a model study.
    Kucera JP; Rudy Y
    Circ Res; 2001 Oct; 89(9):799-806. PubMed ID: 11679410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Termination of pinned vortices by high-frequency wave trains in heartlike excitable media with anisotropic fiber orientation.
    Hörning M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031912. PubMed ID: 23030949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternans amplification following a two-stimulus protocol in a one-dimensional cardiac ionic model of reentry: from annihilation to double-wave quasiperiodic reentry.
    Comtois P; Vinet A
    Chaos; 2007 Jun; 17(2):023125. PubMed ID: 17614679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.