These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 11219507)
21. A New Efficient Method for Detecting Phase Singularity in Cardiac Fibrillation. Lee YS; Song JS; Hwang M; Lim B; Joung B; Pak HN PLoS One; 2016; 11(12):e0167567. PubMed ID: 27907144 [TBL] [Abstract][Full Text] [Related]
25. Frequency analysis of ventricular fibrillation in Swine ventricles. Valderrábano M; Yang J; Omichi C; Kil J; Lamp ST; Qu Z; Lin SF; Karagueuzian HS; Garfinkel A; Chen PS; Weiss JN Circ Res; 2002 Feb; 90(2):213-22. PubMed ID: 11834715 [TBL] [Abstract][Full Text] [Related]
26. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core. Beaumont J; Davidenko N; Davidenko JM; Jalife J Biophys J; 1998 Jul; 75(1):1-14. PubMed ID: 9649363 [TBL] [Abstract][Full Text] [Related]
27. Spatial phase discontinuity at the center of moving cardiac spiral waves. Tomii N; Yamazaki M; Ashihara T; Nakazawa K; Shibata N; Honjo H; Sakuma I Comput Biol Med; 2021 Mar; 130():104217. PubMed ID: 33516959 [TBL] [Abstract][Full Text] [Related]
28. Development of a computer algorithm for the detection of phase singularities and initial application to analyze simulations of atrial fibrillation. Zou R; Kneller J; Leon LJ; Nattel S Chaos; 2002 Sep; 12(3):764-778. PubMed ID: 12779605 [TBL] [Abstract][Full Text] [Related]
29. Simulation of body surface Laplacian maps during ventricular pacing in a 3D inhomogeneous heart-torso model. Wu D; Ono K; Hosaka H; He B Methods Inf Med; 2000 Jun; 39(2):196-9. PubMed ID: 10892263 [TBL] [Abstract][Full Text] [Related]
30. Spatially discordant voltage alternans cause wavebreaks in ventricular fibrillation. Choi BR; Jang W; Salama G Heart Rhythm; 2007 Aug; 4(8):1057-68. PubMed ID: 17675081 [TBL] [Abstract][Full Text] [Related]
31. Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. Bingen BO; Engels MC; Schalij MJ; Jangsangthong W; Neshati Z; Feola I; Ypey DL; Askar SF; Panfilov AV; Pijnappels DA; de Vries AA Cardiovasc Res; 2014 Oct; 104(1):194-205. PubMed ID: 25082848 [TBL] [Abstract][Full Text] [Related]
32. Topological charge-density method of identifying phase singularities in cardiac fibrillation. He YJ; Li QH; Zhou K; Jiang R; Jiang C; Pan JT; Zheng D; Zheng B; Zhang H Phys Rev E; 2021 Jul; 104(1-1):014213. PubMed ID: 34412332 [TBL] [Abstract][Full Text] [Related]
33. Phase shifting prior to spatial filtering enhances optical recordings of cardiac action potential propagation. Sung D; Cosman JSJP ; Mills R; McCulloch AD Ann Biomed Eng; 2001 Oct; 29(10):854-61. PubMed ID: 11764316 [TBL] [Abstract][Full Text] [Related]
34. Rotor Localization and Phase Mapping of Cardiac Excitation Waves Using Deep Neural Networks. Lebert J; Ravi N; Fenton FH; Christoph J Front Physiol; 2021; 12():782176. PubMed ID: 34975536 [TBL] [Abstract][Full Text] [Related]
35. Automating phase singularity localization in mathematical models of cardiac tissue dynamics. Puwal S; Roth BJ; Kruk S Math Med Biol; 2005 Dec; 22(4):335-46. PubMed ID: 16319120 [TBL] [Abstract][Full Text] [Related]
36. Considerations in phase plane analysis for nonstationary reentrant cardiac behavior. Bray MA; Wikswo JP Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051902. PubMed ID: 12059588 [TBL] [Abstract][Full Text] [Related]