These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11219535)

  • 1. In-vivo thyroid 125I monitoring method using imaging plate.
    Nishizawa K; Saze T; Etho M; Murabayashi K; Iwai S
    Health Phys; 2001 Mar; 80(3):235-41. PubMed ID: 11219535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an in vivo thyroid 131I monitoring system using an imaging plate.
    Hirota M; Saze T; Nishizawa K
    Appl Radiat Isot; 2004 May; 60(5):733-40. PubMed ID: 15082053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo thyroid 131I monitoring system using an imaging plate.
    Hirota M; Saze T; Nishizawa K
    Radiat Prot Dosimetry; 2002; 101(1-4):457-60. PubMed ID: 12382790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of in vivo thyroid 131I monitoring with an imaging plate.
    Hirota M; Saze T; Ogata Y; Nishizawa K
    Appl Radiat Isot; 2001 Oct; 55(4):513-6. PubMed ID: 11545504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the ANSI, RSD, KKH, and BRMD thyroid-neck phantoms for 125I thyroid monitoring.
    Kramer GH; Olender G; Vlahovich S; Hauck BM; Meyerhof DP
    Health Phys; 1996 Mar; 70(3):425-9. PubMed ID: 8609037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thyroidal 125I monitoring system using an NaI (Tl) survey meter.
    Nishizawa K; Maekoshi H
    Health Phys; 1990 Feb; 58(2):165-9. PubMed ID: 2298572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of an Imaging Plate System in Emergency 131I Thyroid Monitoring.
    Deji S; Li X; Ito S; Hirota M; Saze T; Nishizawa K
    Health Phys; 2018 Aug; 115(2):221-226. PubMed ID: 29957686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Counting efficiency of whole-body monitoring system using BOMAB and ANSI/IAEA thyroid phantom due to internal contamination of 131I.
    Ghare VP; Patni HK; Akar DK; Rao DD
    Radiat Prot Dosimetry; 2014 Dec; 162(3):230-5. PubMed ID: 24179144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Thyroidal 125I monitoring system using a survey meter for 125I].
    Nishizawa K; Maekoshi H
    Radioisotopes; 1989 Apr; 38(4):203-8. PubMed ID: 2740535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Results of a thyroid monitoring survey carried out on workers exposed to 125I in São Paulo, Brazil.
    Bartolini P; Ribela MT; Araujo EA
    Health Phys; 1988 Sep; 55(3):511-5. PubMed ID: 3170204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NUMERICAL SIMULATION OF DIRECT MEASUREMENT TO DETERMINE THYROID 131I CONTENT OF TWO TEPCO WORKERS CONSIDERING INDIVIDUAL TISSUE THICKNESS.
    Tani K; Kurihara O; Kim E; Sakai K; Akashi M
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):373-6. PubMed ID: 26868011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of uncertainties associated to the in vivo measurement of iodine-131 in the thyroid.
    Dantas BM; Lima FF; Dantas AL; Lucena EA; Gontijo RM; Carvalho CB; Hazin C
    Appl Radiat Isot; 2016 Jul; 113():1-4. PubMed ID: 27108067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of a high-purity germanium detector for routine measurements of 125I in radiation workers.
    Kopp P; Bergmann H; Havlik E; Aiginger H; Unfried E; Riedlmayer L
    Health Phys; 1994 Dec; 67(6):616-20. PubMed ID: 7960782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UNCERTAINTY OF MEASUREMENT IN THE RESPONSE TEST OF A THYROID MONITOR.
    Yunoki A
    Radiat Prot Dosimetry; 2019 Oct; 184(3-4):531-534. PubMed ID: 31089717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calibration of surface contamination monitors for the detection of iodine incorporation in the thyroid gland.
    Bailat C; Buchillier T; Baechler S; Bochud F
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):505-9. PubMed ID: 21149292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Study of Performance using Five Different Gamma-ray Spectrometers for Thyroid Monitoring under Nuclear Emergency Situations.
    Hosoda M; Iwaoka K; Tokonami S; Tamakuma Y; Shiroma Y; Fukuhara T; Imajyo Y; Taniguchi J; Akata N; Osanai M; Tsujiguchi T; Yamaguchi M; Kashiwakura I
    Health Phys; 2019 Jan; 116(1):81-87. PubMed ID: 30489369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The BRMD thyroid-neck phantom: design and construction.
    Kramer GH; Gamarnik K; Noël L; Burns L; Meyerhof D
    Health Phys; 1996 Aug; 71(2):211-4. PubMed ID: 8690605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of counting efficiencies of a portable NaI detector using Monte Carlo simulation for thyroid measurement following nuclear accidents.
    Ha WH; Kim JK; Jin YW
    J Radiol Prot; 2017 Sep; 37(3):635-641. PubMed ID: 28474600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Counting Efficiencies Determined by Monte Carlo Methods for In Vivo Measurement of 131I Activity in Thyroid.
    Park M; Kwon TE; Ha WH; Kim CH; Park S; Jin YW
    Health Phys; 2019 Oct; 117(4):388-395. PubMed ID: 30913058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance assessment and uncertainty evaluation of a portable NaI-based detection system used for thyroid monitoring.
    Bento J; Martins B; Teles P; Neves M; Colarinha P; Alves F; Teixeira N; Vaz P; Zankl M
    Radiat Prot Dosimetry; 2012 Aug; 151(2):252-61. PubMed ID: 22345216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.