BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11219725)

  • 21. Effect of CaCl₂ hydrothermal treatment on the bone bond strength and osteoconductivity of Ti-0.5Pt and Ti-6Al-4V-0.5Pt alloy implants.
    Nakagawa M; Yamazoe J
    J Mater Sci Mater Med; 2009 Nov; 20(11):2295-2303. PubMed ID: 19544048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Apatite-forming ability of Ti-15Zr-4Nb-4Ta alloy induced by calcium solution treatment.
    Yamaguchi S; Takadama H; Matsushita T; Nakamura T; Kokubo T
    J Mater Sci Mater Med; 2010 Feb; 21(2):439-44. PubMed ID: 19842018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crestal remodelling and osseointegration at surface-modified commercially pure titanium and titanium alloy implants in a canine model.
    Lee J; Hurson S; Tadros H; Schüpbach P; Susin C; Wikesjö UM
    J Clin Periodontol; 2012 Aug; 39(8):781-8. PubMed ID: 22671935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone response to a novel Ti-Ta-Nb-Zr alloy.
    Stenlund P; Omar O; Brohede U; Norgren S; Norlindh B; Johansson A; Lausmaa J; Thomsen P; Palmquist A
    Acta Biomater; 2015 Jul; 20():165-175. PubMed ID: 25848727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An alternative ex vivo method to evaluate the osseointegration of Ti-6Al-4V alloy also combined with collagen.
    Veronesi F; Torricelli P; Martini L; Tschon M; Giavaresi G; Bellini D; Casagranda V; Alemani F; Fini M
    Biomed Mater; 2021 Feb; 16(2):025007. PubMed ID: 33445161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical Performance of Artificial Hip Stems Manufactured by Hot Forging and Selective Laser Melting Using Biocompatible Ti-15Zr-4Nb Alloy.
    Okazaki Y; Mori J
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33557357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Particle release from dental implants immediately after placement - An ex vivo comparison of different implant systems.
    Barrak F; Li S; Muntane A; Bhatia M; Crossthwaite K; Jones J
    Dent Mater; 2022 Jun; 38(6):1004-1014. PubMed ID: 35461699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ surface electrochemical characterizations of Ti and Ti-6Al-4V alloy cultured with osteoblast-like cells.
    Huang HH
    Biochem Biophys Res Commun; 2004 Feb; 314(3):787-92. PubMed ID: 14741704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone formation at the surface of low modulus Ti-7.5Mo implants in rabbit femur.
    Lin DJ; Chuang CC; Chern Lin JH; Lee JW; Ju CP; Yin HS
    Biomaterials; 2007 Jun; 28(16):2582-9. PubMed ID: 17324455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications.
    Samuel S; Nag S; Nasrazadani S; Ukirde V; El Bouanani M; Mohandas A; Nguyen K; Banerjee R
    J Biomed Mater Res A; 2010 Sep; 94(4):1251-6. PubMed ID: 20694992
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium.
    Park JW; Kim HK; Kim YJ; Jang JH; Song H; Hanawa T
    Acta Biomater; 2010 Jul; 6(7):2843-51. PubMed ID: 20085830
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of plasma chemical oxidation of titanium alloy on bone-implant contact in rats.
    Diefenbeck M; Mückley T; Schrader C; Schmidt J; Zankovych S; Bossert J; Jandt KD; Faucon M; Finger U
    Biomaterials; 2011 Nov; 32(32):8041-7. PubMed ID: 21840591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface elastic properties of Ti alloys modified for medical implants: a force spectroscopy study.
    Munuera C; Matzelle TR; Kruse N; López MF; Gutiérrez A; Jiménez JA; Ocal C
    Acta Biomater; 2007 Jan; 3(1):113-9. PubMed ID: 17070123
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Tricalcium Magnesium Silicate Coating on the Electrochemical and Biological Behavior of Ti-6Al-4V Alloys.
    Maleki-Ghaleh H; Hafezi M; Hadipour M; Nadernezhad A; Aghaie E; Behnamian Y; Abu Osman NA
    PLoS One; 2015; 10(9):e0138454. PubMed ID: 26383641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanomechanical properties of surface-modified titanium alloys for biomedical applications.
    Cáceres D; Munuera C; Ocal C; Jiménez JA; Gutiérrez A; López MF
    Acta Biomater; 2008 Sep; 4(5):1545-52. PubMed ID: 18499544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy.
    Kiel-Jamrozik M; Szewczenko J; Basiaga M; Nowińska K
    Acta Bioeng Biomech; 2015; 17(1):31-7. PubMed ID: 25952459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-vitro and in-vivo evaluation of a new Ti-15Mo-1Bi alloy.
    Lee JW; Lin DJ; Ju CP; Yin HS; Chuang CC; Lin JC
    J Biomed Mater Res B Appl Biomater; 2009 Nov; 91(2):643-650. PubMed ID: 19630058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Osseointegration of Ti-6Al-4V alloy implants with a titanium nitride coating produced by a PIRAC nitriding technique: a long-term time course study in the rat.
    Sovak G; Gotman I; Weiss A
    Microsc Microanal; 2015 Feb; 21(1):179-89. PubMed ID: 25482093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of bone around titanium implants and bioactive glass particles: an experimental study in rats.
    Gorustovich A; Rosenbusch M; Guglielmotti MB
    Int J Oral Maxillofac Implants; 2002; 17(5):644-50. PubMed ID: 12381064
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.