These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 11220177)

  • 1. Chemical investigations of aquifers affected by pyrite oxidation in the Bitterfeld lignite district.
    Grützmacher G; Hindel R; Kantor W; Wimmer R
    Waste Manag; 2001; 21(2):127-37. PubMed ID: 11220177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consecutive geoelectric measurements reveal the downward movement of an oxidation zone.
    Berger W; Börner FD; Petzold H
    Waste Manag; 2001; 21(2):117-25. PubMed ID: 11220176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics and processes of hydrogeochemical evolution induced by long-term mining activities in karst aquifers, southwestern China.
    Huang H; Chen Z; Wang T; Zhang L; Zhou G; Sun B; Wang Y
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):30055-30068. PubMed ID: 31414390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment.
    Jørgensen CJ; Jacobsen OS; Elberling B; Aamand J
    Environ Sci Technol; 2009 Jul; 43(13):4851-7. PubMed ID: 19673275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable isotope fractionation related to technically enhanced bacterial sulphate degradation in lignite mining sediments.
    Knöller K; Jeschke C; Simon A; Gast M; Hoth N
    Isotopes Environ Health Stud; 2012; 48(1):76-88. PubMed ID: 22092249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geochemical characterization of acid mine lakes in northwest Turkey and their effect on the environment.
    Yucel DS; Baba A
    Arch Environ Contam Toxicol; 2013 Apr; 64(3):357-76. PubMed ID: 23223936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sediment geochemistry and arsenic mobilization in shallow aquifers of the Datong basin, northern China.
    Xie X; Wang Y; Duan M; Liu H
    Environ Geochem Health; 2009 Aug; 31(4):493-502. PubMed ID: 18763040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of mining activities on evolution of water quality of karst waters in Midwestern Guizhou, China: evidences from hydrochemistry and isotopic composition.
    Li X; Wu P; Han Z; Zha X; Ye H; Qin Y
    Environ Sci Pollut Res Int; 2018 Jan; 25(2):1220-1230. PubMed ID: 29082473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District, northwestern Bangladesh.
    Selim Reza AH; Jean JS; Yang HJ; Lee MK; Woodall B; Liu CC; Lee JF; Luo SD
    Water Res; 2010 Mar; 44(6):2021-37. PubMed ID: 20053416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geochemical controls on fluoriferous groundwaters of the Pliocene and the more recent aquifers: the case of Aigion region, Greece.
    Katsanou K; Siavalas G; Lambrakis N
    J Contam Hydrol; 2013 Dec; 155():55-68. PubMed ID: 24140858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina).
    Nicolli HB; Bundschuh J; García JW; Falcón CM; Jean JS
    Water Res; 2010 Nov; 44(19):5589-604. PubMed ID: 21035830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution and hydrogeochemical behavior of arsenic enriched groundwater in the sedimentary aquifer comparison between Datong Basin (China) and Kushtia District (Bangladesh).
    Huq ME; Su C; Fahad S; Li J; Sarven MS; Liu R
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15830-15843. PubMed ID: 29582329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the impact of preload on pyrite-rich sediment and groundwater quality.
    Karikari-Yeboah O; Addai-Mensah J
    Environ Monit Assess; 2017 Feb; 189(2):58. PubMed ID: 28091885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of urbanization on hydrochemical evolution of groundwater and on unsaturated-zone gas composition in the coastal city of Tel Aviv, Israel.
    Zilberbrand M; Rosenthal E; Shachnai E
    J Contam Hydrol; 2001 Aug; 50(3-4):175-208. PubMed ID: 11523324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geogenic arsenic and other trace elements in the shallow hydrogeologic system of Southern Poopó Basin, Bolivian Altiplano.
    Ormachea Muñoz M; Wern H; Johnsson F; Bhattacharya P; Sracek O; Thunvik R; Quintanilla J; Bundschuh J
    J Hazard Mater; 2013 Nov; 262():924-40. PubMed ID: 24091126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aquatic environmental nanoparticles.
    Wigginton NS; Haus KL; Hochella MF
    J Environ Monit; 2007 Dec; 9(12):1306-16. PubMed ID: 18049768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of saline tracer performance during electrical conductivity groundwater monitoring.
    Mastrocicco M; Prommer H; Pasti L; Palpacelli S; Colombani N
    J Contam Hydrol; 2011 Apr; 123(3-4):157-66. PubMed ID: 21324545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Groundwater acidification and the mobilization of trace metals in a sandy aquifer.
    Kjøller C; Postma D; Larsen F
    Environ Sci Technol; 2004 May; 38(10):2829-35. PubMed ID: 15212256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining the area of influence of depression cone in the vicinity of lignite mine by means of triangle method and LANDSAT TM/ETM+ satellite images.
    Zawadzki J; Przeździecki K; Miatkowski Z
    J Environ Manage; 2016 Jan; 166():605-14. PubMed ID: 26610610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.