These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 11220184)
1. Biogeochemical and ecological considerations in designing wetland treatment systems in post-mining landscapes. Kalin M Waste Manag; 2001; 21(2):191-6. PubMed ID: 11220184 [TBL] [Abstract][Full Text] [Related]
2. Relocation of net-acid-generating waste to improve post-mining water chemistry. Morin KA; Hutt NM Waste Manag; 2001; 21(2):185-90. PubMed ID: 11220183 [TBL] [Abstract][Full Text] [Related]
3. The impact of pumped water from a de-watered Magnesian limestone quarry on an adjacent wetland: Thrislington, County Durham, UK. Mayes WM; Large AR; Younger PL Environ Pollut; 2005 Dec; 138(3):443-54. PubMed ID: 15993994 [TBL] [Abstract][Full Text] [Related]
4. Treatment of acid lignite mine flooding water by means of microbial sulfate reduction. Glombitza F Waste Manag; 2001; 21(2):197-203. PubMed ID: 11220185 [TBL] [Abstract][Full Text] [Related]
5. Uranium mobility and accumulation along the Rio Paguate, Jackpile Mine in Laguna Pueblo, NM. Blake JM; De Vore CL; Avasarala S; Ali AM; Roldan C; Bowers F; Spilde MN; Artyushkova K; Kirk MF; Peterson E; Rodriguez-Freire L; Cerrato JM Environ Sci Process Impacts; 2017 Apr; 19(4):605-621. PubMed ID: 28352908 [TBL] [Abstract][Full Text] [Related]
6. The basis for ecotoxicological concern in aquatic ecosystems contaminated by historical mercury mining. Wiener JG; Suchanek TH Ecol Appl; 2008 Dec; 18(8 Suppl):A3-11. PubMed ID: 19475915 [TBL] [Abstract][Full Text] [Related]
7. Rapid removal of nitrate and sulfate in freshwater wetland sediments. Whitmire SL; Hamilton SK J Environ Qual; 2005; 34(6):2062-71. PubMed ID: 16221826 [TBL] [Abstract][Full Text] [Related]
8. Geologic processes influence the effects of mining on aquatic ecosystems. Schmidt TS; Clements WH; Wanty RB; Verplanck PL; Church SE; San Juan CA; Fey DL; Rockwell BW; DeWitt EH; Klein TL Ecol Appl; 2012 Apr; 22(3):870-9. PubMed ID: 22645817 [TBL] [Abstract][Full Text] [Related]
9. Pesticides in fluvial wetlands catchments under intensive agricultural activities. Poissant L; Beauvais C; Lafrance P; Deblois C Sci Total Environ; 2008 Oct; 404(1):182-95. PubMed ID: 18621412 [TBL] [Abstract][Full Text] [Related]
10. Levels of polycyclic aromatic hydrocarbons and dibenzothiophenes in wetland sediments and aquatic insects in the oil sands area of northeastern Alberta, Canada. Wayland M; Headley JV; Peru KM; Crosley R; Brownlee BG Environ Monit Assess; 2008 Jan; 136(1-3):167-82. PubMed ID: 17380417 [TBL] [Abstract][Full Text] [Related]
11. Influence of mining-related activities on concentrations of metals in water and sediment from streams of the Black Hills, South Dakota. May TW; Wiedmeyer RH; Gober J; Larson S Arch Environ Contam Toxicol; 2001 Jan; 40(1):1-9. PubMed ID: 11116335 [TBL] [Abstract][Full Text] [Related]
12. Clear Lake sediments: anthropogenic changes in physical sedimentology and magnetic response. Osleger DA; Zierenberg RA; Suchanek TH; Stoner JS; Morgan S; Adam DP Ecol Appl; 2008 Dec; 18(8 Suppl):A239-56. PubMed ID: 19475928 [TBL] [Abstract][Full Text] [Related]
13. Control of non-point source pollution by a natural wetland. Kao CM; Wu MJ Water Sci Technol; 2001; 43(5):169-74. PubMed ID: 11379129 [TBL] [Abstract][Full Text] [Related]
14. A methodology for the assessment of rehabilitation success of post mining landscapes--sediment and radionuclide transport at the former Nabarlek uranium mine, Northern Territory, Australia. Hancock GR; Grabham MK; Martin P; Evans KG; Bollhöfer A Sci Total Environ; 2006 Feb; 354(2-3):103-19. PubMed ID: 16242178 [TBL] [Abstract][Full Text] [Related]
15. Cover design for radioactive and AMD-producing mine waste in the Ronneburg area, eastern Thuringia. Gatzweiler R; Jahn S; Neubert G; Paul M Waste Manag; 2001; 21(2):175-84. PubMed ID: 11220182 [TBL] [Abstract][Full Text] [Related]
16. Titration curves: a useful instrument for assessing the buffer systems of acidic mining waters. Totsche O; Fyson A; Kalin M; Steinberg CE Environ Sci Pollut Res Int; 2006 Jul; 13(4):215-24. PubMed ID: 16910118 [TBL] [Abstract][Full Text] [Related]
17. The association of microbial activity with Fe, S and trace element distribution in sediment cores within a natural wetland polluted by acid mine drainage. Aguinaga OE; Wakelin JFT; White KN; Dean AP; Pittman JK Chemosphere; 2019 Sep; 231():432-441. PubMed ID: 31146135 [TBL] [Abstract][Full Text] [Related]
18. Nutrient and sediment removal by a restored wetland receiving agricultural runoff. Jordan TE; Whigham DF; Hofmockel KH; Pittek MA J Environ Qual; 2003; 32(4):1534-47. PubMed ID: 12931911 [TBL] [Abstract][Full Text] [Related]
19. Geochemistry and mineralogy of arsenic in mine wastes and stream sediments in a historic metal mining area in the UK. Rieuwerts JS; Mighanetara K; Braungardt CB; Rollinson GK; Pirrie D; Azizi F Sci Total Environ; 2014 Feb; 472():226-34. PubMed ID: 24295744 [TBL] [Abstract][Full Text] [Related]
20. Stable Hg isotope signatures in creek sediments impacted by a former Hg mine. Smith RS; Wiederhold JG; Jew AD; Brown GE; Bourdon B; Kretzschmar R Environ Sci Technol; 2015 Jan; 49(2):767-76. PubMed ID: 25489982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]