BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 11222281)

  • 21. A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold.
    Garnham CP; Gilbert JA; Hartman CP; Campbell RL; Laybourn-Parry J; Davies PL
    Biochem J; 2008 Apr; 411(1):171-80. PubMed ID: 18095937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular organisation of the ice nucleation protein InaV from Pseudomonas syringae.
    Schmid D; Pridmore D; Capitani G; Battistutta R; Neeser JR; Jann A
    FEBS Lett; 1997 Sep; 414(3):590-4. PubMed ID: 9323042
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice.
    Chao H; Sönnichsen FD; DeLuca CI; Sykes BD; Davies PL
    Protein Sci; 1994 Oct; 3(10):1760-9. PubMed ID: 7849594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A theoretical model of a plant antifreeze protein from Lolium perenne.
    Kuiper MJ; Davies PL; Walker VK
    Biophys J; 2001 Dec; 81(6):3560-5. PubMed ID: 11721016
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity.
    Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL
    FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrostatic Interactions Control the Functionality of Bacterial Ice Nucleators.
    Lukas M; Schwidetzky R; Kunert AT; Pöschl U; Fröhlich-Nowoisky J; Bonn M; Meister K
    J Am Chem Soc; 2020 Apr; 142(15):6842-6846. PubMed ID: 32223131
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interfacial Water Ordering Is Insufficient to Explain Ice-Nucleating Protein Activity.
    Lukas M; Schwidetzky R; Kunert AT; Backus EHG; Pöschl U; Fröhlich-Nowoisky J; Bonn M; Meister K
    J Phys Chem Lett; 2021 Jan; 12(1):218-223. PubMed ID: 33326244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ice nucleation of an insect lipoprotein ice nucleator (LPIN) correlates with retardation of the hydrogen bond dynamics at the myo-inositol ring.
    Bäumer A; Duman JG; Havenith M
    Phys Chem Chem Phys; 2016 Jul; 18(28):19318-23. PubMed ID: 27373225
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions.
    Doxey AC; Yaish MW; Griffith M; McConkey BJ
    Nat Biotechnol; 2006 Jul; 24(7):852-5. PubMed ID: 16823370
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect.
    Graether SP; Kuiper MJ; Gagné SM; Walker VK; Jia Z; Sykes BD; Davies PL
    Nature; 2000 Jul; 406(6793):325-8. PubMed ID: 10917537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical study of interaction of winter flounder antifreeze protein with ice.
    Jorov A; Zhorov BS; Yang DS
    Protein Sci; 2004 Jun; 13(6):1524-37. PubMed ID: 15152087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ice-nucleating proteins are activated by low temperatures to control the structure of interfacial water.
    Roeters SJ; Golbek TW; Bregnhøj M; Drace T; Alamdari S; Roseboom W; Kramer G; Šantl-Temkiv T; Finster K; Pfaendtner J; Woutersen S; Boesen T; Weidner T
    Nat Commun; 2021 Feb; 12(1):1183. PubMed ID: 33608518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor.
    Kristiansen E; Ramløv H; Højrup P; Pedersen SA; Hagen L; Zachariassen KE
    Insect Biochem Mol Biol; 2011 Feb; 41(2):109-17. PubMed ID: 21078390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hyperactive antifreeze protein from fish contains multiple ice-binding sites.
    Graham LA; Marshall CB; Lin FH; Campbell RL; Davies PL
    Biochemistry; 2008 Feb; 47(7):2051-63. PubMed ID: 18225917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ice Nucleation Properties of Ice-binding Proteins from Snow Fleas.
    Bissoyi A; Reicher N; Chasnitsky M; Arad S; Koop T; Rudich Y; Braslavsky I
    Biomolecules; 2019 Sep; 9(10):. PubMed ID: 31557956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A model of the three-dimensional structure of ice nucleation proteins.
    Kajava AV; Lindow SE
    J Mol Biol; 1993 Aug; 232(3):709-17. PubMed ID: 8355267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Hexapeptide Repeated Segment LIAGY is a Hot Spot of Aggregation of the Pseudomonas syringae Ice Nucleation Protein.
    Di Martino P
    Protein Pept Lett; 2016; 23(2):120-4. PubMed ID: 26548995
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water-organizing motif continuity is critical for potent ice nucleation protein activity.
    Forbes J; Bissoyi A; Eickhoff L; Reicher N; Hansen T; Bon CG; Walker VK; Koop T; Rudich Y; Braslavsky I; Davies PL
    Nat Commun; 2022 Aug; 13(1):5019. PubMed ID: 36028506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How Size and Aggregation of Ice-Binding Proteins Control Their Ice Nucleation Efficiency.
    Qiu Y; Hudait A; Molinero V
    J Am Chem Soc; 2019 May; 141(18):7439-7452. PubMed ID: 30977366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.