These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 11222752)

  • 21. Prediction of alternative RNA secondary structures based on fluctuating thermodynamic parameters.
    Le SY; Chen JH; Maizel JV
    Nucleic Acids Res; 1993 May; 21(9):2173-8. PubMed ID: 7684834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maturation of atypical ribosomal RNA precursors in Helicobacter pylori.
    Iost I; Chabas S; Darfeuille F
    Nucleic Acids Res; 2019 Jun; 47(11):5906-5921. PubMed ID: 31006803
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Secondary structures of Escherichia coli antisense micF RNA, the 5'-end of the target ompF mRNA, and the RNA/RNA duplex.
    Schmidt M; Zheng P; Delihas N
    Biochemistry; 1995 Mar; 34(11):3621-31. PubMed ID: 7534474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of highly conserved single-stranded nucleotides of Xenopus 5S RNA in the binding of transcription factor IIIA.
    Romaniuk PJ
    Biochemistry; 1989 Feb; 28(3):1388-95. PubMed ID: 2653439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural requirements for the processing of Escherichia coli 5 S ribosomal RNA by RNase E in vitro.
    Cormack RS; Mackie GA
    J Mol Biol; 1992 Dec; 228(4):1078-90. PubMed ID: 1474579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overaccumulation of the chloroplast antisense RNA AS5 is correlated with decreased abundance of 5S rRNA in vivo and inefficient 5S rRNA maturation in vitro.
    Sharwood RE; Hotto AM; Bollenbach TJ; Stern DB
    RNA; 2011 Feb; 17(2):230-43. PubMed ID: 21148395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Secondary structure prediction of interacting RNA molecules.
    Andronescu M; Zhang ZC; Condon A
    J Mol Biol; 2005 Feb; 345(5):987-1001. PubMed ID: 15644199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of Secondary Structures Conserved in Multiple RNA Sequences.
    Xu ZZ; Mathews DH
    Methods Mol Biol; 2016; 1490():35-50. PubMed ID: 27665591
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TurboFold: iterative probabilistic estimation of secondary structures for multiple RNA sequences.
    Harmanci AO; Sharma G; Mathews DH
    BMC Bioinformatics; 2011 Apr; 12():108. PubMed ID: 21507242
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and evolution of the 4.5-5S ribosomal RNA intergenic region from Glycine max (soya bean).
    Nazar RN; McDougall J; Van Ryk DI
    Nucleic Acids Res; 1987 Sep; 15(18):7593-603. PubMed ID: 3116503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computer-aided prediction of RNA secondary structures.
    Auron PE; Rindone WP; Vary CP; Celentano JJ; Vournakis JN
    Nucleic Acids Res; 1982 Jan; 10(1):403-19. PubMed ID: 6174937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving RNA Branching Predictions: Advances and Limitations.
    Poznanović S; Wood C; Cloer M; Heitsch C
    Genes (Basel); 2021 Mar; 12(4):. PubMed ID: 33805944
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deleterious mutation prediction in the secondary structure of RNAs.
    Barash D
    Nucleic Acids Res; 2003 Nov; 31(22):6578-84. PubMed ID: 14602917
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA secondary structure prediction.
    Mathews DH; Turner DH; Zuker M
    Curr Protoc Nucleic Acid Chem; 2007 Mar; Chapter 11():Unit 11.2. PubMed ID: 18428968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interpreting oligonucleotide microarray data to determine RNA secondary structure: application to the 3' end of Bombyx mori R2 RNA.
    Duan S; Mathews DH; Turner DH
    Biochemistry; 2006 Aug; 45(32):9819-32. PubMed ID: 16893182
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving RNA secondary structure prediction with structure mapping data.
    Sloma MF; Mathews DH
    Methods Enzymol; 2015; 553():91-114. PubMed ID: 25726462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluating the effect of disturbed ensemble distributions on SCFG based statistical sampling of RNA secondary structures.
    Scheid A; Nebel ME
    BMC Bioinformatics; 2012 Jul; 13():159. PubMed ID: 22776037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The computer simulation of RNA folding involving pseudoknot formation.
    Gultyaev AP
    Nucleic Acids Res; 1991 May; 19(9):2489-94. PubMed ID: 1710358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparison of optimal and suboptimal RNA secondary structures predicted by free energy minimization with structures determined by phylogenetic comparison.
    Zuker M; Jaeger JA; Turner DH
    Nucleic Acids Res; 1991 May; 19(10):2707-14. PubMed ID: 1710343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting of antisense DNA: comparison of activity of anti-rabbit beta-globin oligodeoxyribonucleoside phosphorothioates with computer predictions of mRNA folding.
    Jaroszewski JW; Syi JL; Ghosh M; Ghosh K; Cohen JS
    Antisense Res Dev; 1993; 3(4):339-48. PubMed ID: 8155975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.